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PREFACE 
 

 
The study of real world problems often involves solving certain mathematical problems such as a set of 
linear equations or a set of ordinary differential equations.  In most cases, analytical solutions cannot be 
obtained and thus, the only way to obtain any idea of the behaviour of a solution is to approximate the 
problem in such a way that numbers representing the solution can be produced. The sequence of numbers 
obtained is called a numerical solution and the process generating such a solution is called a numerical 
method. 
 
This book introduces the fundamental numerical methods for solution of some mathematical problems 
often encountered in applied mathematical modelling, science and engineering studies. It focuses on the 
mathematical theories behind the numerical methods, the design of numerical algorithms for 
approximating the solution of the problems that cannot be solved exactly, the estimate of numerical 
errors, and convergence analysis. To cater for those who are interested in finding the solution without 
getting details on how it is obtained and how accurate the solution is, the book also shows, through many 
examples, how to use symbolic packages like Maple and MATLAB to solve most of the mathematical 
problems covered in each chapter. 
 
The book can be used as a reference book for scientists and engineers who have interest in using 
mathematics to solve real world problems. It can also be used as a textbook for numerical analysis or 
scientific computing courses designed for students who have completed at least the first year of standard 
university calculus courses. The delivery of the materials covered in the book requires a minimum of 72 
hours of lectures, which normally requires two standard semesters of studies. However, it is also possible 
for instructors to choose various topics from the book to construct a one semester course. The following 
diagram, showing chapter prerequisites, provides guidelines for the choice of chapters. 
 

                    

 Chapter 1

Chapter 2  Chapter 3 Chapter 7

 Chapter 4 Chapter 10Chapter 9

Chapter 5 Chapter 6 

Chapter 8Chapter 11 

Chapter 12 

Chapter 13 
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For example, one could choose to construct a one semester course consisting of chapters 1, 2, 3, 7, 8, 9 
and 11. 
 
Today, many programming languages, such as F95, C++, Maple and MATLAB, are available for 
implementation of numerical algorithms on computers. For large-scale numerical computation where 
efficiency is important, F95 is the best choice and C++ provides a second best choice. On the other hand, 
MATLAB and Maple both offer powerful graphic functions and are easy to use as these languages do not 
require high level of programming skills. For design of numerical computing programs using 
F95/C++/MATLAB, the reader is referred to our recently published book “Program Design using 
F95/C++/MATLAB”; while for numerical computing using Maple, the appendix in this book provides a 
quick reference. 
 
The numerical algorithms covered in this book are written without referencing to any specific 
programming language, and so one could choose a proper programming language for implementation of 
numerical algorithms on computer based on the need and the purpose of study. For the programming 
exercises questions in each chapter, one could also choose to implement the associated algorithms using 
his/her chosen programming language instead of F95 as specified in some of the questions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yong  Hong Wu & B. Wiwatanapataphee 
October 2007 
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CHAPTER 

1 
       Preliminaries  

 
 
In this chapter, we first review some basic theorems of calculus which are to be used in later 
chapters. Then we discuss the general procedure for solving real world problems mathematically 
and give general guidelines for algorithm design. Then, we introduce the concept of round off 
errors and analyse their generation and propagation in computation using floating point arithmetic. 
Finally, we introduce two kinds of error measures and error tests for checking convergence of 
numerical results. 

 
 

            Some Basic Theorems in Calculus  
 
 

1.1 

 

The Mean Value Theorem 
 

If  f(x) ∈C [a, b]  and  f(x)  is differentiable on (a, b) then there exists a number c in (a, b) ,  as 
shown in Figure 1.1 below,  such that 
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          Figure 1.1  Sketch for  the Mean value theorem 

 
The Mean Value Theorem for Integrals  
 
 

If  f(x)∈  C[a, b],  and  g(x) is integrable on  [a, b] and  does not change sign on  [a, b],  then   
there exists a number   c ∈   (a, b)  such that 

 

                                                 ( ) ( ) ( ) ( )
b b

a a
f x g x dx f c g x dx=∫ ∫ . 
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The Intermediate Value Theorem  
 
 

Suppose f(x)  C[a, b] and L be any number  between   f(a) and  f(b) where  f(a)∈ ≠ f(b).  Then 
there exists a number    c ∈   [a, b], ass shown in Figure 1.2, such that f(c)=L 

 

 
         Figure 1.2  Sketch for  the intermediate value theorem 

 
The Extreme Value Theorem  
 
 

If  f(x)∈  C[a, b],  then  f(x) attains an absolute maximum value f(c1) and an absolute minimum 
value f(c2) at some number c1 and c2  in [a, b]. If f(x)  is differentiable in (a, b), then c1 and c2 occur 
either at the end points of [a, b] or at the critical points where f’ /

 is zero. 
 

 
Taylor Theorem  
 

Suppose that f(x) ∈  Cn[a, b]  and  f (n+1) exists on [a, b].  Let x0∈[a, b].  Then for any x∈[a, b], 
there exists a  ξ(x) between x0 and x such that  
 

                                          ( ) ( ) ( )n nf x P x R x= +  
 

where ( )nP x  and are called the nth Taylor polynomial for f(x) about x( )nR x 0 and the truncation 
error respectively, and are defined by  
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Taylor Theorem in 2-Variables  
 

Suppose that f(x,y) and all its partial derivatives of order less than or equal to n+1 are continuous 
on some region D and let 0 0( , )x y D∈ .  Then for any 0 0( , ) ( , )x y x h y k D= + + ∈ , there exist 

0 0[ , ]x x hξ ∈ +  and  0 0[ , ]y y kη ∈ +  such that  

                          ( , ) ( , ) ( , )n nf x y P x y R ξ η= +  
 

where ( ,n )P x y  and are called the nth Taylor polynomial for f(x,y) about (x( ,nR ξ η) 0, y0) and the 
truncation error respectively, and are defined by 

 

           ( ) ( ) ( )0 0 0 0
0 0
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            Procedure for Solving Mathematical Problems Numerically 
 
 

1.2 

 
The following figure summarizes the procedure for solving mathematical problems numerically 

 
 

State the problem clearly 

Design an algorithm 

Write a program

Compile the program 

Run the program Solution 

Numerical methods 

Programming language 

Computer commands 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4  Procedure for solving mathematical problems 
 
 
Definition of  Algorithm:  An algorithm is a sequence of steps that describe how to obtain the solution 

to a given problem. 
 

Obviously, algorithm design is the most important step in the process of problem solving, while 
numerical methods provide support to the design of algorithms. Numerical methods and detailed 
algorithms for solving various mathematical problems will be given in chapter 2 to 13, while the 
general guidelines for algorithm design are given in the following. 
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Use the top to down design technique 

 

In this technique, we first use the Decomposition technique  to break the problem into a series of 
smaller problems,  then use the Stepwise refinement technique to describe each smaller problem in 
greater detail. 
 

The advantage of decomposition is that we can initially think of the overall steps required without 
getting lost in the details. Details are introduced only as we begin the refinement of our algorithm. 

 
 

Use flowchart and pseudocode to assist in the design of algorithms 
 

Two tools can be used to assist us in designing and presenting an algorithm, namely 
 

   Pseudocode  - show the steps in a series of English - like language. 
   Flowchart   - show the steps in graphic form. 

 

Use structured algorithm 
 

To improve the readability, we should use a set of standard forms (structures) to describe an 
algorithm. There are three kinds of standard algorithm structures 
 

• Sequence structures 
• Selection structures 
• Repetition structures 
 

An algorithm formed by a standard structure is called a structured algorithm. When a structured 
algorithm is converted to a computer program, the computer program is called a structured 
program. 

 
 

Example 1.1:  Given a set of experiment data xi, compute the average value. 
 

 

Algorithm Design 
 

Decomposition: To compute an average, we need to sum and count the values. Thus our 
decomposition is 

 

•   Read data values and keep a sum and count 
 

•  Divide the sum by the number of data (count) to get the average 
 

•   Print the average. 
 

Refinement: 
•  Step 1 can be refined by setting a count and a sum to zero following by a 

loop to read the values and update the count and the sum 
 

•   The loop should be structured into a while loop, thus we must determine a 
condition necessary to keep us in loop. For example, if all data values are 
non-zero, we can put zero at the end of the data to indicate the end of data. So 
the loop is 'while the data is non zero do ....' .  
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Algorithm Presentation 
        

Pseudocodes 
Set    Sum = 0 
   Count = 0 
Read data value x 
while ( x ≠ 0 ) do 
   Set Sum = Sum + x 
   Count = Count + 1 
   Read next data value x 
Average = Sum/ Count 

    Print the Average 
 
 

Flow Chart 
 

average = sum/count
print average

 x≠0? No

Yes

sum = sum + x
count = count + 1

read the new value x

read data value x

sum  =0 
count=0 

stop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      

 
 

            Round – off Errors and Their Propagation in Computation 
 

 

1.3 

Numerical results are influenced by many types of errors. Some sources of errors are difficult to 
influence; others can be reduced or even eliminated by, for example, rewriting formulas or making 
other changes in the computational sequence. The major sources of errors are listed as follows: 
 

• Error in given Input data such as errors in the input of irrational numbers and data from 
experiments; 

• Truncation errors such as errors due to breaking off an infinite series after a finite 
number of terms; 

• Simplification in the mathematical model;  
• Human errors and Machine errors;  
• Round - off errors 
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In this section, we introduce the concept of round of errors and then analyse their generation and 
propagation in computation using floating point arithmetic. 

 
Concept of  Round -Off  Errors  
 

The arithmetic in a machine involves numbers with only a finite number of digits and so errors 
automatically occur when values are combined through an arithmetic operation in computers.  
 

Storage structure of numbers in computers 
 

Numbers are stored in the computer as a sequence of binary (base 2) digits, or bits. To simplify the 
analysis of the effects of round-off errors, throughout this chapter a hypothetical decimal computer 
will be used, in which numbers are represented in the normalised decimal floating point form:    

 
±0 1 2. ...d d d ×10k

n ,    where 0                      (1.1) 9   for i 1, 2, ..., id≤ ≤ = k
 

The sequence of digits  d d   is known as the MANTISSA  and the power, n, as the 
EXPONENT.   

1 2 ...

 
As an example, 25/4   has the form + 0.625×101. 
 

The finite size of the computer implies that there is a maximum number (say k) of digits with 
which a value can be represented; that is, the mantissa must contain only k digits. The value of k 
will vary for different computers and compilers.  

 
Representation of real numbers in computers  
 

 

Any real number, x, can be represented in the form 
 

    x d d d dk k
n= ± ×+0 11 2 1. ... ... 0 . 

 
However, this number can only be represented by its floating point form (1.1) in computers. The 
floating point form, denoted by fl(x), is obtained by terminating the mantissa of x after k digits. 
There are two common ways of doing this.  
 

• One is known as Chopping or Truncating: the digits d dk k+ +1 2, ,...  are chopped from the 
mantissa to give   

  

      fl x d d dk
n( ) . ...= ± ×0 11 2 0 . 

 

• The second method is known as Rounding. In this case,  
 

if   dk+ ≥1 5 ,  we add one to  dk  to obtain   fl(x), that is we round up.  
If  dk+ <1 5 ,  we merely chop off all but the first  k digits.   
 
For example, if  k = 4  and rounding is used,  1.12356   are represented as   + 0.1124×101

 

                                          while  –7.22321  are represented as   – 0.7223×101
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Round-Off Error 
 

The term "Round-Off Error" is used to describe the difference between the exact representation 
of a number and the chopped or rounded machine representation. 

 
Overflowed and Underflow  

 

Beside limitation on the number of digits for the mantissa, there are also limitations on the size of 
the exponent n;  n  must satisfy the inequality  − ≤ ≤m n M   where  M  and  m  are positive 
integers, which may differ for different computers.  
 
 

• If  n > M, the number has become too large to be represented in the computer and is said to 
have overflowed and the execution of program is stopped with an error message.  

 
• If  n <– m,  Underflow occurs. In this case some computers reset the value of the number to 

zero and continue the calculation; others give an error message. 
 

 

Generation and Propagation of Round-off Errors  
 

What happens to round-off errors when numbers are combined using floating arithmetic?  
 

Denote fl x( )  and fl y( )   as the floating point representations of x  and y , 
 

            as the machine operations of addition, subtraction, multiplication and  ,   , and ⊕ Θ ⊗ ∅
                                          division.    

Then we can define the machine operations, for example, x y fl fl x fl y⊕ = +( ) ( )  and we are 
interested in the difference between x y+  and x y⊕ .  
 
Before we can analyse the round-off error generated in machine operations, we need to know the 
following point: when an arithmetic is performed in a k-digit computer, it is performed in registers 
that can hold 2k digits (twice as many digits as the floating point representation of number). Then 
this 2k-digit number is rounded to give a   k-digit representation. 
 

In the following, we consider each of the basic machine operations in turn. 
 

Addition x y fl fl x fl y⊕ = +( ( ) ( ))   
 

The error in x y⊕  has two sources: 
 

•   the error in representing  x and  y  by  fl(x) and  fl(y), and  
 

•   the error in representing the sum  ( ) ( )fl x fl y+  by    fl[ fl x fl y( ) ( )+ ].   
 

For example,  if   x = 4/3  and  y = 2/9    then  on a four-digit machine, 
   

     ,      (the error in representing x by fl(x)  is  x-fl(x)=0.00033333) 1( ) 0.1333 10fl x = ×

             0( ) 0.2222 10 .fl y = ×
 

  Thus,    1 0( ) ( ) 0.1333 10 0.2222 10 .fl x fl y+ = × + ×



 8 

As numbers that are to be added together must have the same exponent and so this sum is 
rewritten as 

                  fl x fl y( ) ( ) . . .+ = × + × = ×0 1333 10 0 02222 10 0 15552 101 1 1
 

from which      

                          x y fl fl x fl y⊕ = + = ×( ) ( ) .0 1555 101
 

 

and an additional error 0.00002×101 in representing fl x fl y( ) ( )+   has occurred. 
 
The effect of this kind of errors can be more noticeable when a sequence of numbers is being 
added.  The order in which the numbers are added may affect the round-off error and, as a 
consequence, the sum. 
 
For example,   in a four-digit computer,  for  1 -0.1333 10   and  =0.3000 10x y= × × 4

 

     10.1333 10x y y y y x⊕ ⊕ ⊕ ⊕ = × = ,     (Exercise: derive this result) 

  but   ,          which is the correct rounded result.   10.1334 10y y y y x⊕ ⊕ ⊕ ⊕ = ×
 
Therefore, Ideally, when summing numbers of the same sign, they should be added in order of 
increasing magnitude. 
 
Another way of avoiding the accumulation of errors is to accumulate the sum, product by product, 
in a variable with more digits of precision. Eg, to calculate the sum of a sequence of products 
                                   z x y x y x yn n= + + +1 1 2 2 ... ,  
we can use 
       

INTEGER,PARAMETER :: d_kind= SELECTED_REAL_KIND(p=14) 
REAL (KIND=d_kind):: z 
REAL X(100),Y(100)       
      Z=0.0 
      DO 1, I = 1, N 
          Z = Z + X(I)*Y(I) 
    1  CONTINUE 

  

Subtraction [ ]( ) ( )x y fl fl x fl yΘ = −   
 

A problem that can occur with this computation is illustrated as follows.   
 

   For    x = 3/11  and   y = 8/29,   and   and so fl x( ) .= ×0 2727 100 fl y( ) .= ×0 2759 100
 

            [ ] 0 2( ) ( ) ( 0.0032 10 ) 0.3200 10x y fl fl x fl y fl −Θ = − = − × =− × . 
 

   But fl x y fl− = − = − × −( / ) .1 319 0 3134 10 2 . 
 

 

The problem is that the zeros in the first expression do not represent useful information; they are 
there to fill in the floating-point representation of the result of the computation. This lost of 
precision is called Cancellation Error and can be an important source of further error in 
numerical calculation. Thus, calculations should be organised to avoid (if possible) subtraction 
of two close data. 
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Multiplication [ ]( ) ( )x y fl fl x fl y⊗ = ×    

 

This operation presents few problems apart from possible overflow or underflow. 
For example, the product   cannot be represented on a machine with 
maximum exponent M. 

)103245.0()102324.0( MM ×⊗×

 
Division [ ]( ) / ( )x y fl fl x fl y∅ =   

 

This operation also presents few problems apart from division by a number close to zero. The 
effect of this is to magnify the error that resulted from representing x in floating-point form. 

  

    For example,  for  x = 5/9  and   y = 1/9876,      
 

                               40.5484 10x y∅ = ×

     But         . fl x y( / ) .= ×0 5486 104
 

                                             The earlier rounding errors in x and y have been magnified. 
 

 
 

            ERROR MEASURES & ERROR TESTS 
 

 

1.4 

Two measures are usually used to quantify numerical errors. 
 
Absolute Error  

 
Definition:  Let x* be an approximation to x, then the absolute error in x* is defined as | * |x x− .  

Thus the floating-point representation of x has absolute error  ( ) .x fl x−  

 
Definition:  Two numbers x and x* are said to agree to n decimal places if n is the largest non-

negative integer for which, * 1 10
2

nx x −− < ×   (i.e., <  or less than half 
1

 0.00......05
n−������

unit of the nth decimal place). 
 
For example, for x = 23.496  and x* = 23.494,   as  the absolute error |   is less than  

1/2  unit of the 2nd decimal place, i.e.  
* | 0.002x x− =

 

                                                                         2* 10
2
1 −×<− xx , 

 
x* and x are said to agree to 2 decimal places. 
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Relative Error   
 

 

Definition: Let x* be an approximation to x, then the relative error in x* is defined as
 x x

x
− *

 

provided  that
 
x is not zero. Thus, the floating-point representation of x has relative 

error   

x
xflx )(− . 

 
Definition:  Two numbers x and x* are said to agree to n significant digits (or figures)    if n is the 

largest non-negative integer for which the relative error  
 

*

5 10 n
x x

x
−

−
< ×     

 
(i.e., 

1

< 0.00......05
n−������

). 

 
Example  1.2:    Find x* to approximate 1000 to four significant digits.  
 

Solution     By definition, x* must satisfy 
 

  

x * −
< × ⇒−1000

1000
5 10 4     

  
999.5 < x* <1000.5. 

 

ERROR TEST 
 

In scientific computing, we usually need to check for the convergence of a sequence of iterations, 
for example, to determine whether xn+1 and xn are close. We can use two different kinds of tests. 
 

Absolute Error Test 
 

                    Tolerancexx nn ≤−+1  
 

for some small positive value of tolerance specified beforehand. 
 

 
Relative Error Test 

                   Tolerance
x

xx

n

nn ≤
−+1  

  

which can also be implemented in the form  
                   

                Tolerancexxx nnn ⋅≤−+1  
 

to avoid problems that may arise if xn is close to zero. However, the new form of the relative error 
test may cause another problem Tolerancexn ⋅  is very small, possibly too small to be represented 
on the computer. In this case we shall use a number εm , usually called machine epsilon that is a 
measure of the precision we can obtain on a particular computer, and then replace x Tolerancen ⋅  
by a small multiple (say 5) of εm . The value of εm  varies for computer to computer. 
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EXERCISE  1 

 
Q1. 1  Answer the following questions: 
  (a) What are the essential parts of a computer system? 
 (b) What do we mean by computer memory? 
 (c) What are the differences between internal memory and external memory? 
 (d) What do we mean by software and hardware? 

(e) What is the definition of algorithm? Briefly describe the top-down technique for the design of 
algorithms. 

 (f) How to present an algorithm? 
 (g) Why do we need to compile a C++ program before we can run the program? 
 
 

Q1. 2 Consider the following values of p and p*. What is (i) the absolute error, (ii) the relative error in 
approximating p by p*?  

             (a) p = π,  p* = 3.1;     (b) p = 1/3,  p* = 0.333;     (c) p = π/1000,   p* = 0.0031. 
     -2 2 -4 3 -5 2(Ans: (a) 4.16 10 ,  1.33 10 ;  (b) 3.34 10 ,  1.00 10 ;   (c) 4.16 10 ,  1.33 10  )− −× × × × × × −

 

Q1. 3 The number p* approximates p = 2.7182 to four significant digits. Find the largest interval in 
which  p* can lie. 

 

    (Ans: 2.7168409, 2.7195591) 
 
----------------------------------- 
 
Programming  
 
 

Q1. 4 To find the root of an equation of the form    
 

                                             x – f(x) = 0, 
 

 we can start from an initial guess xo of the root , then improve the estimate by using the following 
iterations 

                                      x f xn n+ =1 ( ),    
 

 until the difference between xn+1  and  xn  is sufficiently small.  Now consider the following equation  
 

                                6 0,       0.3 0.6xx x−− = ≤ ≤
  

 (a) Write a program to find the root of the equation accurate to 3 decimal places. Use x0 = 0.45. 
 (b) Modify the program in (a) such that the solution is accurate to 3 significant digits. 
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       Solution of Nonlinear Equations 

CHAPTER 

2 

 
 

 
Solution of many real world problems involves solving an equation of the form f(x) = 0, or in 
other words locating zeros of f(x) or finding roots of f(x).   To solve f(x) = 0, we usually need 
to find an initial approximation to the root and then refine the approximation step by step. In 
this chapter, we present various methods for solving nonlinear equations. 
 

 
 

            Graphical Solution  
 
 

2.1 
 

For a general nonlinear equation f(x) = 0, the real roots of the equation are the x values of the 
intersections of the graph f(x) with the x-axis. We can thus determine the real roots by 
sketching the graph of f(x) and finding the points where it crosses the x-axis.  
 
Sometimes it is more convenient to rearrange the equation as   f1(x) = f2(x)  and draw the 
graphs of f1(x) and f2(x).  In this case, the real roots of the original equation are the x values of 
the intersections of y = f1(x) with y = f2(x). 

 
y

xO

9

y=9+0.4t 

y=e0.4t

3 6  

Example 2.1 Find the positive real roots of the equation    
 

         e tt0 4 0 4 9 0. . .− − =  
 
Solution    

 

                By rearranging the equation, we have 
  0.4 9 0.4 .te t= +
 

 The graph intersects at tey 4.0= ty 4.09 += 6≈t  
   6root   real  positive a       ≈∃∴ t

 
If the nonlinear equation is a polynomial equation of degree n, then it always has exactly n 
roots, some of which may be multiple roots or complex roots. 

 

For a real single root x0,      the graph  y = f(x) crosses the x- axis at x0;  
For a repeated real root x1= x2,        y = f(x) touches the x- axis at x1;  
For a complex root,             y = f(x) may not cross or touch the x axis. 
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For example,     x x2 1 0 1− = ⇒ = ±  :    
                                         

                               y = f(x) crosses the x- axis at x = 1and x = –1 
 

                   2 1 0    :x x i+ = ⇒ =±   
            y = f(x) does not cross or touch the x-axis 
 

y

x O

y=x 2 +1  
y

x
-1 1O

y=x 2 -1
 
 
 
 
 

                            Real single roots x=-1, 1                        Complex roots x=-i, i 

 
 

            Incremental – Search Method  
 
 

2.2 

This method is one of the simplest and most reliable methods for finding real roots of an 
equation, located within a selected region [a, b].  
 

The method is based on the fact that a single real root is the x value of the intersection of the 
curve y = f(x) with the x-axis. Thus, if f(x) is a continuous function and changes its sign from 
xi-1 to  xi , then the graph  y = f(x) must have crossed the x- axis at least once in the interval 
[xi-1, xi] and hence 1[ ,i i ]x x−  contains at least one real single root. 

 
Algorithm: 
 

Step 1.   Select a search region [a, b]; 
 

Step 2.   Divide the region into N sub-intervals with nodes x0=a, x1, x2, ..., xn= b; 
 

Step 3.   Proceed from left to right, if f(xi–1).f(xi)<0, then the ith interval [xi–1, xi] contains at   
least one real root. 

 

Note:   The process can be used in a subinterval to refine the result. 
 
 
 

            Bisection Method  
 
 

2.3 
 

The problem to solve here is: for a given interval [a, b] which is assumed to contain a unique 
real root of the equation f(x) = 0, find an interval containing the root but with a much smaller 
size.   

 
 

The bisection method is an iterative process for finding the root of f(x) =0. In iteration one, 
the initial interval [a, b] is halved into two sub-intervals one of which will contain the root. 



14   

We keep the sub-interval containing the root as the new initial interval and repeat the process 
until the size of the interval containing the root becomes sufficiently small. Then we take the 
midpoint of the final sub-interval as the estimate of the root. 

 
 

The key point in the algorithm is that when an interval [a, b] is divided into two sub-intervals 
 and [p, b], how to determine which of the sub-intervals contains the root. As [a, b] 

contains a unique real root, the root will be either at p or in one of the sub-intervals.  If f(p) = 
0,  p is the root; otherwise f(p) will have different sign with either f(a) or f(b) but not both. If 
f(p) has different sign with f(a), then (a, p) contains the root or otherwise (p, b) contains the 
root. 

[ , ]a p

 
 

Thus, stating with an initial interval [a, b] with f(a)f(b)<0 and containing only one real root, 
the basic steps used to find the root include 

 
 

Step 1, divide [a, b] into two subintervals [a, p] and [p, b] where p = (a+b)/2 is the 
midpoint of [a, b].  If  f(p)=0, then x = p is the solution,  or otherwise go to step 2. 

 

Step 2,  if f(a).f(p)<0 , then [a, p] contains the root and thus the new smaller interval for 
further analysis is [a, b] with b= p; otherwise [p, b] contains the root and the new  
smaller interval is [a, b] with a= p. 

Step 3, repeat steps 1 and 2 with the new smaller interval until   f(p)=0 or 
2

b a
Tol

−
< . 

 
Algorithm: 
 

 To find a solution to  f(x)=0  given f x C a b( ) [ , ]∈   where  f(a) and  f(b) have opposite sign. 
 

 Input a, b, Tol and  MaxNit. 
 Set i=1 
 While (i<MaxNit ) do 
      Set p=(a+b)/2  
          If   f(p) = 0 or (b – a)/2<Tol   then 
               output p; (procedure completed successfully) 
                stop 
   else 
               Set i = i+1 
                 If  {f(a).f(p)<0 } then   

 a 

 f(x) 

p

 
y 

 b 
 x 

       set b = p 
                    else  
          set a = p 
  Output ('method failed after MaxNit iterations, MaxNit=', MaxNit) 
 

 

Remarks : 
 

1) The sequence generated by the method always converges to the solution since we keep 
the solution x inside the interval located at each step. 

 

2) The sequence {pn} generated to approximate the solution has the error bound  
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.
2

n n
b ap p −

− ≤  

3)  Order of convergence:  

1 1As  ,       ,
2 2

n n n
n n n n n n

b a e
e p p b a e p p+ +

−
= − ≤ − = − ≤ =    

the bisection method has linear convergence rate. 
 
 

            Successive Substitution (fixed – point iteration)  
 
 

2.4 
 

To find a root of f(x) = 0, we manipulate the equation into the form 
  

                        x = g(x).                           (2.1) 
   

Any solution of this equation is called a  fixed point  of g(x).  As (2.1) is a rearrangement of  
f(x) = 0, any fixed point of g(x) is guaranteed to be a root of f(x) = 0.  
 
 

With the new equation, we can set up an iteration, namely fixed point iteration 
 

1 ( ),       0,  1,  2,  ... n nx g x n+ = =  
 

to generate a sequence { , ,...x x1 2  } beginning with an initial guess xo.  Our hope is that 
xn → α , which satisfies  α = g(α), i.e., a fixed point of g(x) or a root of f(x) = 0. 

 

 

Usually, for a given equation f(x) = 0,  there are many different ways of rearranging  f(x) = 0 
in the form of (2.1).  However, only some of these are likely to give rise to successful 
iterations and yield the fixed point, as illustrated in the following example. 

 

Example 2.2:  Find a root of x x2 2 8 0− − = . 
         Solution  Consider  x x2 2 8 0− − = . We can have the following three rearrangements 
           

  
2

1 2
2 8 8(a)   2 8 : ( );   (b)   : ( );    (c)   : ( ).

2
x x

3x x g x x g x x g
x
+ −

= + = = = = = x  
  

  Numerical results for the corresponding iterations with xo=5 are given in the following table. 
 

____________________________________________________________________________________________________________________________________________ 

    n             )(          )(         )( 312111 nnnnnn xgxxgxxgx === +++  
____________________________________________________________________________________________________________________________________________ 

 

     0  5        5                                         5 
         1      4.243           3.600                                    8.5 

2      4.060       4.222              32.125 
         3      4.015         3.895            512.008 
                                     5      4.001          3.973 
         6      4.000          4.013 
           10              4.001 
           11                                                             4.000 

____________________________________________________________________________________________________________________________________________ 
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Remarks: 
 

Obviously, the sequence converges for schemes (a) and (b) but divergences for (c). This 
highlights the need for a mathematical analysis of the method. 

 

Key problems to be analyzed 
 

• How to choose xo and g(x) such that the sequence xo, x1, x2 .... converges to the fixed 
point of g(x) with high convergence rate ? 

 

• How to estimate the rate of convergence and error? 
 

In the following, we will study these problems regarding the solution of    x = g(x). 
 

1)  Sufficient Conditions for the Existence, Uniqueness and Convergence 
 

Theorem 2.1 
 

 1) If ( ) [ ,  ]  and   ( )   [ , ],  then   a solution in [ , ].g x C a b a g x b x a b a b∈ ≤ ≤ ∀ ∈ ∃  
 2) If also ( )  exists on ( , )   and   | ( )| 1  ( , ), g x a b g x k x a′ ′ ≤ < ∀ ∈ b then 
  - g x a b( ) has a unique fixed point in [ , ].                
  - for any xo ∈[a,b], the sequence generated by xn= g(xn-1) (n 1) converges to the solution≥
                          

 

Proof: 
 

Existence 
      

If  g(a) = a  or  g(b) = b,   then there exists a fixed point either in a or in b and thus the 
existence  is proved; 
       

If not, then it must be true that g(a) >a  and  g(b)< b. Define  h(x) = g(x) – x,  then 
h x C a b( ) [ , ]∈   with property  h a  So by the intermediate value 
theorem,  

h b( ) > 0  and   ( ) < 0.
there exists  [ , ]   such that  ( )=0c a b h c∈

 

                                     ∴    ( ) =g c c , 
 

which means that x = c is a fixed point of g(x), and thus the existence is proved. 
 

  

Uniqueness 
Let  both be fixed points of g(x),  then   p q≠
                        

       
using Mean Value Theorem

( ) ( )     ( )p q g p g q g c p q k p q p q′− = − = − ≤ − < −  (as k <1) 
 

which is a contradiction and hence p = q. 
 

Convergence 
Since g maps [a, b] into [a, b], the sequence { }  is defined and xn n

n
=
=∞

0 x a bn ∈[ , ].  
 

Denote x* as the fixed point of g(x), i.e.  x* = g(x*),  then  
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using M.V.T.

1 1 1* ( ) ( *)   ( ) *  *   (where [a,b] )n n n nx x g x g x g x x k x xξ ξ− − −′− = − = − ≤ − ∈ . 
    

Applying  the above inequality inductively gives  
 

      x x k x x k x x k x xn n n
n− ≤ − ≤ − ≤ ≤ −− −* * * ... *        1

2
2 0 .    

Then                        

                           
lim * * lim , .

n
n

n

nx x x x k k
→∞ →∞

− = − =0 0 1     as  <
          

Therefore        
                           n *x x→ ,    and so convergence is proved.                                                      

 
Corollary 
 

  If g(x) satisfies the hypotheses of the convergence theorem, the bound of error involved in 
 using xn  to approximate x* is given by 

               
x x k x a x x x

k
k

x x nn
n

n

n
− ≤ − − ≤

−
−* max{ , }; * .0 0 1 01

1 b -              for all  >
 

 

 
Example 2.3  Given equation x x− − =π / / sin2 1 3 0 

a)  Show that the equation has a unique root in [ , ]0 π .  
b)  Show that for any x0 in [0,π ], the fixed point iteration 

x g x g xi i+ =1
1
3( ) sin  with  ( ) = 2 x+π  will generate a sequence converging to the root. 

c)  Perform two iterations. 
d) Estimate the number of iterations necessary to obtain approximation accurate to within 10– 4

       
Solution 

a)  Choose  g(x) =π /2 + 1/3 sinx. Then the following conditions hold 
 

    1)  g(x)  [ ,  ]C a b∈
 

   2)  
  [0, ]

( )
x
Max g x

π∈
=π /2 + 1/3 < π ;   Min g x

x∈[ , ]
( )

0 π
=π /2 + 0 = π /2 > 0.  

 

    The above results imply that   0 < g(x) <  π    ∀ ∈x [ , ]0 π . 
 

       3)   1 1
03 3( ) cos( )g x x k′ = ≤ =      ∀ ∈x [ , ]0 π  

       

  Therefore, there exists a unique solution in  [0,π ] . 
 

b)  As g(x) satisfies the conditions (1) – (3) in (a), for any x0 [0,∈ π ] the given fixed point 
iteration will generate a sequence converging to the root. 

 

c)   Choose x0 =π , then   

                                       x1  =π /2+1/3 sinπ =π /2;   

                                       x2 =π /2+1/2 sin(π /2) = π /2+1/3 
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d)   As   

                                           x x k kn
n n− ≤ − − =* max( , )π π π π0 . 

 

    To satisfy    ,  we choose    such that  .     x x n kn
n− < <− −* 10 104 4π Therefore  

 

                                        n k nln ln ln ln< ⇒
−

≈
−10 10 1

3
4 4

10π π          > -  
 

 

2)   Convergence (Stopping) Criteria 
 

In iterative methods, we start with an initial estimate of the root and then generate a new 
estimate to improve the previous one. The process is repeated continuously until the estimate 
is sufficiently close to the true value of the root. However, it is usually difficult to determine 
the difference between an estimate and the true value. Hence one of the key problems in 
iteration is deciding when it is time to stop, or what the convergence criteria for the problem 
are.  
 

Essentially there are three possible criteria that we might use to terminate an iterative search 
for a root, all of which depend upon some value becoming less than some small number 
Tolerance. Suppose that the iterative method successively generates the values x0 , x1 , x2  , ....  
Then the convergence criteria are 
 

      1)   ( ) ;nf x To< l       2) 1 ;  n nx x Tol−− <   3) 1 n n

n

x x
Tol

x
−−

<  or combination of them. 

 
Algorithm: 
 

 Input  initial approximation x0, Tolerance Tol &  maximum number of iteration MaxNit. 
 

 Set iter = 0 
 While (iter < MaxNit ) do 
   Calculate new approximation 0( )x g x=  
               If (the result is convergent) then 
                     output the solution x ; (procedure completed successfully) 
                          stop 
   else 
      set:  x0 = x 
      set:  iter = iter+1 
   end if 
 Output ('method failed after MaxNitr iterations, MaxNit=', MaxNit) 
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3)  Error Analysis and Rate of Convergence 
 
 

Definition: 1 1If a sequence { } converges to    and  lim lim ,n n
n

n n
n n

x x e
x x

x x eα α
λ+ +

→∞ →∞

−
= =

−

 

      
Then we say the convergence rate of the sequence is of order α:

 

 

         α --  the order of convergence,   α = 1 gives linear convergence;  
                                                                α = 2 represents quadratic convergence.  
                  A sequence with higher order of convergence converges more rapidly.   
 

         λ --  asymptotic error constant,  
 which affects the speed of convergence but is not as important as α. A 
 sequence with  lower value of λ converges more rapidly.   
 
 

 
Error Analysis (Linear convergence rate) 

 

Assume that g(x) satisfies the convergence condition of a fixed-point iteration.   
 

Let         ,n nx x e= +  

then    1 1  ( )n n nx e g x+ += + = n
2( ) ( ) ( ) ( ).n ng x e g x e g x e′= + = + +Ο  x

 

As           ( ),x g x=  the above equation becomes   
 

                                       1 ( )   for  all  1.n n ne e g x e+ ′≈ <<  

Hence 

                                     +1 ( ) .n

n

e
g x k

e
′= =  

 

Thus if  the fixed-point iteration has linear convergence and the value of k 
determines the rate of convergence. The smaller the value of k, the faster the convergence 
rate.  So for fixed point iterations, ideally choose g(x) such that 

( ) 0,g x k′ = ≠

( ) 1g x′ <  and as small as 
possible. 

 

 
Condition for Quadratic Convergence 
 
 

 Let s be a solution of x = g(x). Suppose  and  '( ) 0g s = "( )g s is continuous and strictly 
 bounded  by M on an open interval containing s, then  such that for     a  0δ∃ >
 ,  the  sequence defined by 0 [ ,  x s sδ δ∈ − + ] x g xn n+ =1 ( )converges at least quadratically to 
 s. Moreover for a sufficiently large value of n,  

 2
1 ( )

2n n
Mx s x+ − < − s . 
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Proof               2( ) ( ) ( )( ) ( )( ) / 2,    [ , ].g x g s g s x s g x s s xξ ξ′ ′′= + − + − ∈  

           2( )( ) 0    ( ) ( )
2

gg s g x s xξ′′
′ = ⇒ = + − s  

   2
1

( )For  :          ( ) ( )
2n n n n

gx x x g x s xξ
+

′′
= = = + s−           

         1
2n n

( )( )  lim lim
2 2

n

n

g sx s g
x s

ξ+

→∞ →∞

′′− ′′
∴ = =

−
 

Thus,   if  g(x)  satisfies the convergence condition and   then the convergence rate 
is at least of order two. 

'( ) 0,g s =

 
 
 

            Newton – Raphson Method  
 

 
The N-R method is one of the most powerful and well-known numerical methods for solving 
a root-finding problem. 
 

The method starts with an initial estimate x0 and refines the approximation step by step.  
 

 

Graphically, the solution of f(x) = 0 is the intersection of y = f(x) with the x-axis (the s as 
shown). To get an estimate of s from the point [x0, f(x0) ] on the curve y = f(x), we draw a 
straight line tangent and find its intersection with the x-axis,  x1, and use this as the new 
approximation of s. By repeating this process, we can gradually approach s. 

The equation of the tangent line through point [xo,  f(xo) ] is  0
0

0

( ) ( )y f x f x
x x
− ′=
−

 

As at y = 0, x = x1, we can thus obtain  x1 by letting  y = 0 and solve the above equation for  x. 
So 

     

                    0
1 0

0

( )0        
( )

f xy x x x
f x

= ⇒ = = −
′

 

 

Denote  x1  by  xn+1  and   x0  by   xn ,  we can rewrite  
the above  formula as 

 

            1
( )
( )

n
n n

n

f x
x x

f x+ = −
′

   for   n=0,1,2,… 

 
Example 2.4:  Solve    x3– 4x – 9=0   using Newton method. 

 

Solution   Firstly, use the bisection method to get an initial guess to the root. 
      

As   f(2)< 0,  f(3) >0,   there exists a  root in  (2, 3). 
 

Letting   x0 = 2.5  and using Newton's method, we have 
 

y 

 x x2 x0x1 

 y= f(x) 

s

O

2.5 
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   f(x) = x3– 4x – 9 
       

   f'(x) = 3x2 – 4 

  
x x

f x
f x1 0

0

0

3

22 5 2 5 4 2 5 9
3 2 5 4

2 7288= − = −
− −

−
=

( )
' ( )

. . * .
* .

.
 

         7067.2
)('
)(

1

1
12 =−=

xf
xfxx

   

                     
    x3 = 2.7065  

 

Algorithm 
 

 To find a solution to f(x) = 0 given an initial approximation x0. 
 

 Input x0, Tol and  MaxNit. 
  Set i =1 
 While (i < MaxNit) do 
     Set x = x0 – f(x0)/ f'(x0) 
               If ( |x–x0| < Tol ) then 
                            output x; (procedure completed successfully) 
                           stop 
     else 
                           Set i = i+1 
                                x0 = x 
  Output ('method failed after MaxNit iterations, MaxNit =', MaxNit) 
 

 
Remarks:  The N-R method can be used to find complex roots when complex 

variables are used and when the initial guess is a complex value. 
 
 

Convergence Theorem:  
  

 Let [ ] [ ]2( ) ,   and  ,  is such that  ( ) 0  and  ( ) 0.f x C a b s a b f s f s′∈ ∈ = ≠  Then if the 
initial  guess  x0 is chosen sufficiently close to s,  Newton's method will generate a 
sequence { }   converging to s. xn n=

∞
1

 

 
Proof.  (exercise) 
 

Hint: Consider Newton's method as a functional iteration scheme   

 

       
1

( )( ) with  ( ) .
'( )n n

f xx g x g x x
f x+ = = −

 

 Then show that there exists a neighbourhood of s ( [s – δ, s + δ] ) such that g satisfies 
the convergence conditions for the fixed point iteration. 
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Error Analysis 
 

Definition of Simple Roots and Multiple Roots 
 

        f(x) has a  simple root at  s   if    ( ) ( ) ( )    where  ( ) 0.f x x s q x q s= − ≠

        f(x) has multiple root of multiplicity m  if   ( ) ( ) ( )    where  ( ) 0.mf x x s q x q s= − ≠
 

Notes:  Newton's method is not so good at finding multiple roots since   . '( ) 0.f s =
 

 
Convergence Rate 

 

Denote s and en as exact solution and the error at the nth iteration, then 
   

          x s en n= +  

       
)('
)(

)('
)(

11
n

n
n

n

n
nnn esf

esfes
xf
xfxesx

+
+

−+=−=+= ++  

     

22
2 11

1
2 2

11 ( ) ( )( ) ( ) ( ) 22 , 
( ) ( ) ( ) ( )

nn n

n n
n n

f f ef s f s e f e
e e

f s f e f s f e

ξ ξξ

ξ ξ+

⎛ ⎞⎟⎜ ′′ ′′− ⎟′ ′′+ + ⎜ ⎟⎜⎝ ⎠
= − =

′ ′′ ′ ′′+ +
 

                       

1 2where both  and  are in between  and ( )n ns x eξ ξ + .  

Thus,       

2

1

( )      if  ( ) 0         quadratic convergence 
2 ( )lim
1               if ( ) 0         linear convergence
2

n

nn
n

f s e f s
f se
e f s

+
→∞

⎧ ′′⎪⎪ ′ ≠ →⎪⎪ ′⎪=⎨⎪⎪ ′⎪ = →⎪⎪⎩

 

 
Limitation 

 

•  Newton’s method usually requires a good initial guess for the root.  If the guess is not 
good enough, the algorithm may miss the root entirely, finding instead one of the other 
roots or not finding a root at all. Thus usually we use a globally convergence scheme to 
find an initial estimate then use Newton's scheme to accelerate the convergence rate. 

 

•  Problems may also arise for certain kinds of equations. Places where f’(x) is zero or close 
to zero at peaks or inflection points in the curve can cause difficulties. 

 

•  The method requires evaluating the derivative of the function that is usually far more 
difficult. 
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            The Secant Method  
 
 

2.6 

To circumvent the problem of derivative evaluation in Newton's method, we approximate the 
derivative by 

                      1

1

( ) ( )
'( ) .n n

n
n n

f x f x
f x

x x
−

−

−
=

−
 

 

Using this approximation in Newton's formula gives 
 
 

                   
x x

f x x x
f x f xn n

n n n

n n
+

−

−
= −

−

−1
1

1

( )(
( ) (

)

)  
 

 

The technique using this formula is called the Secant method. 

 x x2x0
x1

 y=f(x) y 

O
2 

x4

x3 

 0 

1 

3 

4

 

It can be proved that the convergence rate of this method is slower than Newton's method in 
terms of iterations. 

 
             

            Accelerating Convergence- Aitken's Δ2 process* 
 
 

2.7 

The Aitken's Δ2 process can be used to 'speed up' convergence of any linearly convergent 
process. 
 

Suppose  {xn}  is a linearly convergent sequence  with limit  s  and asymptotic error constant   
λ<1,   that is 

                    1lim 1.n

n n

x s
x s

λ+

→∞

−
= <

−
  

 

Assume also that the signs of x s x s x sn n n− − −+ +,   and  1 2  agree and that  n is sufficiently 
large that 
 

              1 2

1
.n n

n n

x s x s
x s x s
+ +

+

− −
≈

− −
 

 

Solving the above equation for s yields    
 

     
2 2 2

2 1 1
2

2 1 2 1

( ) ( ) ˆ:  .
2 2

n n n n n n
n n

n n n n n n n

x x x x x x
ns x x x

x x x x x x x
+ + +

+ + + +

− − Δ
≈ = − = − =

− + − + Δ
           (2.2) 
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Theorem 2.2:   
 

         Let { }xn be a sequence that converges linearly to the limit s with asymptotic constant 

 λ<1 and x sn − ≠ 0  for all n . Then the sequence  converges to s faster than ≥ 0 { } 1
ˆn nx ∞

=

  in the sense that    { } 1n nx ∞
=

ˆ
lim 0n

n n

x s
x s→∞

−
=

−
. 

 

Proof  
   

Hint:  Let δ λ δn n n
n

nx s x s= − − − =+
→∞

( ) / ( ) lim .1 0   and show that  

   Then express ( )  ( )/ ,x s x sn n n n− − +  in terms of     and  .δ δ λ1
 

The direct procedure for constructing { }  is : xn n=
∞

0
 

       x0  , x1  , x2  ,      x3  , x4  , x5  ,       x6  , x7  , x8  ,                x3n  , x3n+1  , x3n+2  
 
 
                ,       ,      ,                       x0 x1 x2 xn
 

In practice, for all values of n, the  calculated from the xn−1 Δ2  process is usually a more 
accurate approximation to s than is the value x3n obtained from g(x3n –1). Hence, a modified 
Aitken’s  method, namely the Steffensen’s method, is usually used . In this method, we 
construct in order 

Δ2

( ){ }3 1 3 2 0
ˆ, ,  ,  ,o n n n n

x x x x
∞

+ + =
 

where xn = g(xn –1)  and    is as defined in (2.2). xn
 
Algorithm 
 

 To  find a solution of an equation using the fixed-point iteration x = g(x) and the  Δ2

 process given an initial approximation x0. 
   

 Input x0, Tol  and  Max_iter. 
 Set I=1 
 while (i < max_iter) Do 
    x1 = g(x0) 
    x2 = g(x1) 
    x = x0 – (x1– x0)2/(x2 – 2x1+x0) 
    if ( x x− 0 < Tol ) then 
      output (‘solution is: x =‘, x) 
      stop 
    else 
      i = i + 1 
      set x0 = x 
 output (‘method failed after Max_iter iterations, max_iter =‘, max_iter) 
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            Solution of  Nonlinear Equations using Maple/MATLAB 
 
2.8 

 
 

Solution of Nonlinear Equations using Maple 
 

The Maple fsolve function can be used to solve a nonlinear equation f(x)=0 numerically. 
The Syntax is  

  fsolve(f(x), variable, [option]) 
 

where  variable  specifies the variable of the equation ( eg  x ), and  the optional arguments 
may include 

complex      : find roots over the complex plane 
interval      : specify the range where solutions are to be found, eg. x=-2..-1; 
var = value  : with this, you can specify starting values for the variables, eg. x=2.0 
                         (if this is to be used, then cannot include the variable argument) 
maxsols = n  : find only the n least roots. 

avoid = s    : avoid certain values when searching for roots, eg. avoid={x=0, x=2} 
 

Example 1.  solve  e– x  + 2x – 2 = 0  on [-2, -1] .     
 

> x_sol=fsolve(exp(-x)+2*x-2,x,x=-2..-1);
      
    yields                                    x_sol = -1.678346990 
 
Example 2.  solve x3 – 1.58x2 – 4.04x + 2.29 = 0. 
 

> x_sol=fsolve(x^3-2*x^2+x-2, x=2, complex); 
 
 

yields                    x_sol = (-1.000000000*I, 1.000000000*I, 2.) 
 
 

Solution of Nonlinear Equations using MATLAB 
 

In  Matlab, an equation f(x)=0 can be solved by using the “fsolve()” function as below 
 

>> xsol = fsolve(@(x) f(x), x0) 
 

where  x0  is the initial guess  of the solution. 
 

Example    Solve  for x with initial guess x0=1. 2 2 0xe x− + − =
 

>> xsol = fsolve(@(x) (exp(-x)+2*x-2), 1) 
yields 

xsol   = 
          0.7680 
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SUMMARY 
 

In this chapter, we discuss several methods for finding roots of nonlinear equations: graphical 
solution method, incremental search method, bisection method, fixed point iterations, 
Newton's method, secant method and etc. The graphic method is useful for finding an initial 
guess. The incremental search method is useful for finding intervals that contain roots. The 
bisection method and the secant method begin with an interval that contains a root and then 
determine a smaller subinterval that contains the root. The fixed-point iterations and Newton's 
method start with an initial guess and refine the estimate through an iteration process.  

 
______________________ 
 

EXERCISE 2 
 

 

Q2.1  Show, by using the graphical method, that the following equations have exactly one root and 
that in each case the root lies in the interval [0.5, 1].   

             01e )(   ;0ln )(    ;0cos  )( 2 =−=+=− xxcxxbxxa
 
Q2.2. Consider the following equation  
 

x3 – 1.58x2 – 4.04x + 2.29 = 0.  
 

(a) How many roots exist for this equation? 
(b)  Starting at x = –10, use the incremental search method to find all intervals of size 1.0 in the 

interval [–10, 10] that contain roots for this equation. 
(c) Explain why you might find fewer than three small intervals containing roots for cubic 

equations over a given interval 
(d) Explain why you should be concerned if you find more than 3 small intervals containing  

roots for a cubic equation over a given interval. 
 

 

Q2. 3 The interval [2, 3] contains a root of the equation in Q9. 2.   
(a) Use two iterations of the bisection method to approximate the root in the interval (mark the    

subinterval discarded in each iteration).   
(b) Use the bisection method to approximate a root x in the interval such that ( ) 0.1f x <                                                                   
(Ans:  (a)  2.625) 
 

 

Q2. 4 Consider the nonlinear equation e– x  + 2x – 2 = 0  (sections2.1 and 2. 2)  
   (a) show that the equation has roots in  both intervals [–2, –1] and [0, 0.8]. 

(b) determine which of the following iteration schemes will give a sequence converging to the 
solution in [0, 0.8] for any [ ]0 0,  0.8x ∈   (reasons should be given)  

                1 +1
1( ) =1               (ii)  ln 2 ln(1 )
2

xn
n ni x e x x−
+ − =− n− −             (answer (i))    

 

   
(c) perform 3 iterations using the scheme determined in (b). 
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Q2.5 For equation x
x

= +5
2 2 , determine an interval [a, b] on which fixed point iteration will 

converge.  Perform two iterations and estimate the number of iterations necessary to obtain 
the approximation accurate to within 10-5  

   (Ans:  [2.5, 3.0], 2.69065) 
 

Q2.6  a) Use the convergence theorem for fixed point iteration to show that the sequence defined by 

       1
1

1 1 ,    for n 1
2n n

n
x x

x−
−

= + ≥ ,    converges to 2  whenever x0 > 2 . 

      b) Use the fact that ( 2
00 x< − )2  whenever 0 2   x ≠ to show that if 0 < x0 < 2 ,  

then  x1 > 2 . 
c)  Use the result in parts (a) and (b) to show that the sequence in (a) converges to 2 ,  

whenever x0 > 0.    
 

Q2. 7 Use the Newton's -Raphson method to solve equation  x3 – 1.58x2 – 4.04x + 2.29 = 0.  
   Perform two iterations with x0 = 3                          
    (Ans: 2.781) 
_______________________________________________________________________________________________________________________________________ 
 

Programming 
 

Q2. 8 Write the program using the bisection method in the following aspects and then use the 
program to solve the equation in Q2. 4.  

1) Declare all real variables using an appropriate kind type value such that they can be used 
to store values with at least 10 digits of precision; 

2) Change the block if construct in the main program unit to a case construct; 
3) Print results using formatted output statements; 
4) Assign the value of the root computed to a variable with name EQ_root; 
5) Stop iteration if  f(x_mid) = 0 or  x right x left tolerance_ _− < . 

 

Q2.9 Write a subroutine ITERAT to implement the fixed-point iteration method.  Then write a 
main program which calls ITERAT to find roots accurate to within 10-5 for the equations in 
Q2. 4 and Q2. 5. 

  

 Requirement: 1)  Define the fixed point iteration function g(x) using a function subprogram 
            FUNCTION  G(X) 
        2)  Implement the fixed point iteration method using a subroutine 
            SUBROUTINE  ITERAT(G, X0, Tol, Max_iter,  X, err) 
            where 
         G     = Fixed point iteration function 
         X0    = Before entry, must be set to the initial guess of the root x0. 
         Tol    = Input. Before entry, must be set to the value of Tolerance 
           Max_iter  = Input. Before entry, must be set to the maximum number of         
                    iterations to be used 
         X     = Output.  On exit, X contains the value of the root. 
           err        = Output. On exit,   

          err=0  indicates that the procedure completed  successfully;   
       err =1 indicates that the method failed after Niter iterations. 
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3) Write a main program to read x0, tol & Max_iter, to call the subroutine 
and to print the result or error message.  

 
Q2.10 Write a subroutine NEWTON to implement the Newton-Raphson method for solving f(x) = 0.  

Then write a main program which calls the subroutine to find the root accurate to within 10-5 
for the equation in Q2. 7. 

 Requirement:  as in Q2. 9. 
 

Q2.11 Modify the program Write a subroutine BISEC to implement the Bisection method for 
solving f(x) = 0. Then write a main program which calls the subroutine to find roots accurate 
to the within 10-5 for the equation in Q2.5. 

 

 Requirement:  
 

1) Define f(x)  using a  function subprogram  or  a  statement function 
2) Implement the Bisection method using a subroutine 
     SUBROUTINE  BISET(a, b, Tol, Nite,  X, Ierr) 
     where  a, b, Tol, Niter   =  Input,  as defined in section 2.3. 
        X, Ierr      =  Output, as defined in Q2.7.    
3) Write a main prog. to read a, b, tol and Niter,  to call the subroutine and to print the result.  

 
Q2.12  Solve  Q2.2 and Q2.5 using Maple and MATLAB. 
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       Direct Methods for Systems of Linear Equations  

CHAPTER 

3 

 
 

A general linear system of n equations in n unknowns can be written in the form 

                                                                                        (3.1) 
11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

......
......

......

n n
n n

n n nn n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =
#

n

or in matrix form   Ax=b . 
 
At present, many techniques are available for the solution of linear systems of equations. 
These techniques are classified into direct methods and iterative methods. In this chapter, we 
study various direct methods for solving linear systems. The rest of the chapter is organised 
as follows.  
 

Section 3.1 gives the preliminary for the solution of linear systems.  
 

Section 3.2  introduces the Gaussian elimination method. 
 

Section 3.3  presents the LU factorization method and analyses its connection with the 
Gaussian elimination method  

 

Section 3.4 first shows the need of performing row interchanges and then introduces the 
scaled maximum column pivoting technique  

 

Section 3.5   introduces the permuted LU method and analyses its connection with the 
Gaussian elimination method with row interchange.  

 

Section 3.6  presents various efficient techniques for the solution of various special types 
of linear systems including positive definite systems and tridiagonal systems. 

 

Section 3.7 describes how to find the inverse of a matrix by solving linear systems 
 

Section 3.8 describes how to solve linear systems using Maple/MATLAB functions 
 

 

            Preliminary  
 

 

3.1 

Existence and Uniqueness of Solution 
 

For a system of n equations in terms of n unknowns Ax= b, we can construct an augmented 
matrix (A|b)  to characterise the linear system. Based on the ranks of A and (A|b), there are 
three possibilities of solutions 
 

• A unique solution for x                          ←    if    Rank (A) = Rank (A|b) = n 
• Infinitely many solutions for x              ←     if    Rank (A) = Rank (A|b) < n 
• No solution for x  (inconsistent)     ←     if    Rank (A) < Rank (A|b) 



30 

Elementary Row Operations 
 

The following three elementary row operations can be used to simplify the augmented matrix 
(i.e., the linear system) 
 

         Multiplying a row by a non-zero scalar 
         Adding a multiple of one row to a different row 
        Interchanging rows 
 

Application of Row Operations in Solving linear Systems 
 

If an augmented matrix [ ]|C C d′ =  is obtained from [ ]|A A b′ =  by a finite number of 
elementary row operations, then C ' is  row equivalent to A' and the solution of Cx= d is 
identical to the solution of Ax= b.  Hence, given a linear system, one could use row 
operations to reduce the system into a simpler system and solve as such. The Gaussian 
elimination method presented in the next section is based on this idea. 

 
 

            Gaussian Elimination  
 

 

3.2 

Solving a linear system Ax= b by Gaussian elimination includes two phases: eliminating 
process and backward substitution process. 

 

Elimination Process  
  

The elimination process reduces the system by row operations to an equivalent simpler 
system Ux= y in which U is an upper triangular matrix.  This process requires (n –1) steps. 

 

Step 1  (Assume ).  Eliminate the 1st unknown from equations (2 – N) (i.e., set the 
1st column below the diagonal to zero). This can be achieved by subtracting suitable 
multiples of the first row (equation) from the other rows (equations), namely 

11 0a ≠

                                 .11RmRR iii −⎯⎯←
The above rule is to be applied to every element of the ith row. Thus we have, 
 

                                              
(1)(2) (1)

1 1

(1)(2) (1)
1 1

   ( 1, 2,  3,...,  )     ij ij i j

i i i

a a m a
j n

b b m b

⎫⎪= − ⎪⎪ =⎬⎪= − ⎪⎪⎭
For  j = 1, we have  
                                             ,     i=1,2,…,n. (2) (1) (1)

11 1 1ii ia a m a= − 1

Thus to set , we only need to choose (2)
1 0ia =

                                              . (1) (1)
1 1 11/i im a a=

 

During the process, the first equation is called pivotal equation and its coefficient at 
the diagonal ( ) is called the pivot. After this step, the augmented matrix becomes (1)

11a
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(1) (1) (1) (1)
11 12 1 1

(2) (2) (1)
22 2 2

(2) (2) (2)
2

....

0 ....
0

0 ....

n

n

nn nn

a a a b

a a b

a a b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

# #
# #

#
#

   

  

#

Step k  After (k−1) steps of the elimination process, all the elements below the diagonal in 
columns 1 to (k−1) have been set to zero. In the kth step, assume that the kth pivot 

, we deal with column k to set the elements below the diagonal in this 
column to zero (i.e., eliminate the kth unknown from equations (k + 1) to  n). This 
can be achieved by performing the following row operations for  i= k+1 to n     

akk
k( ) ≠ 0

                         .                 ( ) ( )    with    /k k
i i ik k ik ik kkR R m R m a a←⎯⎯ − =

     Applying the above row operation rule to every column of the ith row yields     

                 ,a a m aij
k

ij
k

ik kj
k( ) ( ) ( )+ = −1       b b m bi

k
i

k
ik k

k( ) ( ) ( ) ,+ = −1        ( j = k , n)             (3.2) 
 

Obviously from the above formulae, we have  

                
( )

( 1) ( ) ( )
( ) 0
k

k k kik
ik ik kkk

kk

a
a a a

a
+ = − = , 

and so the elements below the diagonal in column k will all be set to zero. 
 

After  (n –1) steps, the system becomes 
 

                       

(1) (1) (1)
11 1 1 1

(2) (2)
22 2

( )( )

0

0 0

n

n

nn n nnn

a a x b
a a

x ba

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

" " "
# #" "
# ## % % #
# ## % % #

" "

   

( ) ( )or     nA nx b=  or    Ux= y. 
                                                                

In summary, we have the following recurrence formulae for the elimination process 
 

Recurrence formulae for the Gaussian elimination process 
 

     for k=1, 2 ,…, n−1 
           for i=k+1,n 
                                 ( ) ( )/k k

ik ik kkm a a=

                   )()()1( k
kik

k
i

k
i bmbb −=+

                   for  j = k + 1, n  
                           )()()1( k

kjik
k

ij
k

ij amaa −=+

 
 

Exercise.   Write a F95/C++/Maple/Matlab program segment to implement the above 
elimination process. Store the multiples mij in the lower triangle of  A.                                           
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Backward Substitution 
 

The backward substitution solves the new equivalent system Ux = y, i.e 

                              

11 1 1 1

0

0 0

n

k kkk kn

n nnn

u u x y

x yu u

x yu

⎛ ⎞⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟=⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

"
# #% #

"
# ## % #

"

 

From the nth equation,  we have              .                                                         (3.3)  nn n nu x y=

From the kth equation, we have        
  

1
.

n

kk k kj j k
j k

u x u x y
= +

+ ∑ =                                   (3.4)
       

Thus from (3.3) and (3.4), we have the following recurrence formulae  
 

Recurrence formulae for the backward substitution 

    n
n

nn

y
x

u
=  

    

1

1 [ ]
n

k k kj
kk j k

jx y u
u

= +

= − ∑ x ,     ( k = n –1, n – 2, ...... 1). 

 
Exercise. Write a F95/C++/Maple/Matlab program segment to implement the above 

backward substitution process. 
 

Operation Count 
   

The number of operations in each step and consequently the total number of operations 
required are summarized in the following tables 

 
                    Elimination for U         forward subs. for y  backward subs. for x 
 

 ___________________________________________________________________________________________________________________________________________ 

  Step                        ×               ÷               ± ×           ±            ÷          ×       ±   
 
    1              (n–1)2         (n–1)2           n–1           n–1        n–1         1         0        0 
 
   2              (n–2)2         (n–2)2          n–2           n–2        n–2         1         1        1  
 
     k              (n–k)2         (n–k)2           n–k           n–k        n–k        1         k–1       k–1 
 

 
    n–1                1                 1               1               1            1          1         n–2       n–2 
 

     n                0                 0               0               0            0         1         n–1       n–1 
 ___________________________________________________________________________________________________________________________________________ 

  Total                                           n           
1

2

1

n

i

i
−

=
∑

1
2

1

n

i

i
−

=
∑

1

1

n

i

i
−

=
∑

1

1

n

i

i
−

=
∑

1

1

n

i

i
−

=
∑

1

1

n

i

i
−

=
∑

1

1

n

i

i
−

=
∑
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Therefore,  for the elimination process    
 

the number of   
31 1

2

1 1

( 1)(2 1) ( 1)*/ :     
6 2 3

n n

i i

n n n n n n ni i
− −

= =

− − −
÷ + = + =∑ ∑ 2

− , 

 

the number of   
3 21

2

1
/ :    

3 2 6

n

i

n n ni
−

=
+ − = − +∑    ; 

 

while for the substitution process  
 

the number of    , 
1

2

1
*/ :     2

n

i
i n n

−

=
÷ + =∑

 

the number of    .         
1

2

1
/ :    2

n

i
i n n

−

=
+ − = −∑

 

So if n is large,  the elimination process requires about       n3 3   operations  of   */÷ ,   
                   the substitution process requires about        operations of   */n2 ÷ . 

  
The elimination process described in this section includes computations of the upper 
triangular matrix   U(A(n)) and the right hand side vector y(b(n)). It will be shown in section 3 
that the determination of y is in fact through a forward substitution process, namely solving 
Ly = b where L is a lower triangular matrix. 
 

Example 3.1  Solve       using Gaussian elimination  method. 
    

          

x x x
x x x
x x

1 2 3
1 2 3
1 2

2 0
2 2 3

3 2

+ + =
+ + =

− − =

⎛

⎝
⎜
⎜ 3

Solution 
 

                      

/ 2 /1 221 21 11
/ 1/1 131 31 11

22 2 1
3 3 2

1 ( 2) 1 232 32 22
13 3 22

1 2 1 0 1 2 1 0
2 2 3 3 0 2 1 3
1 3 0 2 0 1 1 2

1 2 1 0
0 2 1 3
0 0 1/ 2 1/ 2

R R R
R R R

R R R

m a a
m a aA b

m a a

= = =
= =− =−

← −
← +

= =− − =

← −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ = = ⎯⎯⎯⎯⎯⎯⎯⎯⎯→ −⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ −⎢ ⎥
⎢ ⎥
⎢⎣ ⎦⎥

 

                  
                          ∴ =        x3 1 

                       3 3 3 1
2 3 2 2 22 3              1xx x x − −

− −− + = ⇒ = = =−  
                    .      1 2 3 1 2 32 0      2 2( 1) 1 1x x x x x x+ + = ⇒ =− − =− − − =
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            LU Factorization and Its Connection with Gaussian Elimination 
 

 

3.3 
 

Theorem 3.1 (Factorization Theorem) 
 
  

If the Gaussian elimination procedure can be performed on the linear system Ax= b 
without row interchanges, then A can be factored into the product of a lower triangular 
matrix L and an upper triangular U,  i.e.,  A = LU. 
 

 

 
  Proof    (Hint). To prove   A=LU,  let  

 

                  21

1 2

1   
1

,

1n n

m
L

m m

⎡ ⎤Ο
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

# # %
"

(1) (1) (1)
11 12 1

(2) (2)
22 2

( )

n

n

n
nn

a a a

a aU

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ο⎢ ⎥⎣ ⎦

…

…
% #

 

       
       where m aij ij

k and ( )  are as defined in section 3. 2. Then show that (LU)ij  = aij 

 
Corollary:                 
                         (1) (2) ( )

11 22det ... n
nnA a a a= .     

 

Proof     detA = det L detU. 
              Since L and U are triangular, their determinants are the product of their diagonal 

elements. 
 

 
Exercise.  Write a F95/C++/Maple/Matlab program segment to read a matrix A and then find 

its LU factorization using the Gaussian elimination. 

  
LU Method and Its Connection with the Gaussian Elimination Method 
 
     

    If     A  =  LU,    then    Ax =  b     becomes      LUx =  b. 
      Put     Ux =  y,        then   Ly =  b. 
       

  
Thus, the procedure for solving Ax = b by the LU method is: 

        

(1)   Compute   L,U                     (by Gaussian elimination process)   
 

(2)   Solve        Ly = b   for y     (by forward substitution to yield   y1 →  y2  → ...  →  yn )   
 

(3)   Solve        Ux = y  for x      (by backward substitution to yield xn →  xn-1→  ...→  x1 )  
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Advantages of LU Method 
 
     

• More economic if we need to solve many systems with the same coefficient matrix A but 
different right hand side, as we only need to evaluate   L and  U for one time. Once L and 
U are saved, only the forward and backward substitutions are needed to solve each 
system. 

 

• Storage space may be economized. If A is not required after factorization, we can store L 
and U in A.  

    
Form of LU Factorization 
 

From the result of Gaussian elimination process, we can obtain one form of LU factorization.  
Is it the unique form of the factorization?  No ! Why ?    

 

Consider the defining equations  for  L and U: 
 

            

 

   . 

11 1 11 11 1

1 1

:
:

n n

n nn n nn

a a l u

a a l l

⎡ ⎤ ⎡ ⎤ ⎡Ο
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ Ο⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

" " " "
# # % % #
# # % % #

" " " " nn

u

u

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

 

As we have n2 equations in terms of n(n+1) unknowns (both L and U have  n(n+1)/2 non-
zero elements), the form of LU is not unique. To have a unique solution, we need n more 
additional equations on the entries of L and U. Different choices of additional equations will 
lead to different forms of LU factorization. 

 

     eg.     lii  = 1  (i =1, n)    Doolittle's method →
 

           Uii= 1        →   Crout's method 
 

           lii  = Uii       →   Choleski's method 
 
Compact Scheme for LU Decomposition  
 
       

As an example, we consider here the Crout's Method.  The defining equations for the 
elements of L and U for this scheme are as follows 

                                          

                 

11 11 1 111

( )1

( )1

1
1

1
0

1
 

1
0

1

kk

jj

nk j n

kk kju kj knk kk

ui ik ii ik

n nk nn
n n

a au u ul

a au ul l

l l l a

l l l a a

⎛⎛ ⎞⎛ ⎞ ⎜⎟⎜ ⎜⎟⎜ ⎟⎜⎟ ⎜⎜ ⎟⎟ ⎜ ⎜⎜ ⎟⎟ ⎜ ⎜⎟⎜ ⎟ ⎜ ⎜⎟⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎟⎜ ⎜⎟⎜ ⎟⎜ ⎜⎟ =⎜ ⎟⎜ ⎜⎟⎜ ⎟⎜⎟ ⎜⎜ ⎟⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎟⎜⎟⎜ ⎟⎟ ⎜⎜ ⎟⎜⎝ ⎠ ⎝ ⎠ ⎝

"" " "
%% ## %

"" "
# # % # # #% #
" %

# # % %
" "

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎠n

 

The above system consists of  n  equations in terms of  unknowns including 
 non-zero entries of L and non-zero entries of U, and hence can be used 

to completely determine L and U.  

n× n n×
( 1) / 2n n+ ( 1) / 2n n−
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To determine the L and U, we multiply rows of L with columns of U and each multiplication 
will result in one equation. If we calculate the elements of L and U one by one in a systematic 
order, namely column 1 of L and row 1 of U, and then column 2 of L and row 2 of U and so 
on, then each multiplication will result in one equation involving only one new unknown, and 
so recurrence formulae can be derived for calculating lij  and uij  , as detailed below. 

 
Assume that the first (k-1) columns of L and (k-1) rows of U have been determined, then  
 
 

• multiplying the  ith row of L  with the  kth column of U  yields 
                 

                  ( )  (1 2 ( 1) 1 2 ( 1)0 1 0i i i k ik ii k k k k ikl l l l l u u u a− −⋅ =" " " " " )
     that gives 

                                                          
1

1

k

ip pk ik ik
p

l u l a
−

=
+ =∑

      and so we obtain the recurrence formulae for calculating the unknown elements in column 
k of L: 

                                                               (i = k to n); 
1

1

k

ik ik ip pk
p

l a l u
−

=
= −∑

 
• multiplying the kth row of L  with the jth column of U  yields 
 

                          ( )  ( )1 2 1 2 ( 1)0k k kk j j kj k j kjl l l u u u u a+⋅ =" " " "

      that gives 

                                                          
1

1

k

kp pj kk kj kj
p

l u l u a
−

=
+ =∑

      and so we obtain the recurrence formulae for calculating the unknown elements in row k 
of U: 

                                                          
1

1

1 k

kj kj kp pj
pkk

u a l u
l

−

=

⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎟⎜⎝ ⎠
∑      (j = k+1 to n). 

 
In summary, we have the following compact scheme for the LU factorization. 
 

 

Compact Scheme for LU Factorization (Crout’s method) 
 

       for k=1, 2,..., n  :                             

             

1

1

1

1

         (  to  )

1 ( 1 to  

k

ik ik ip pk
p

k

kj kj kp pj
kk p

l a l u i k n

u a l u j k
l

−

=

−

=

= − =

⎛ ⎞⎟⎜ ⎟⎜ ⎟= − = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑

∑ )n
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Example 3. 2   Solve

 
1

2

3

3 0 1 x 2
0 2 1  x  = 5
1 0 0 1x

⎡ ⎤⎡ ⎤ ⎡−
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦⎣ ⎦

 

 using the LU factorization method.

 

Solution 
  

LU factorisation    
                             

   

                  
11 12 13

21 22 23

31 32 33

0 0 1 3 0 1
0  0 1  = 0 2 1

0 0 1 1 0 0

l u u
l l u
l l l

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥

⎤
⎢ ⎥ ⎢

⎢ ⎥
⎥

⎢ ⎥ ⎢
⎢ ⎥

⎥
⎢ ⎥ ⎢

⎢ ⎥
⎥

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣⎣ ⎦ ⎦

 

 

Calculate 1st  column of L  ( ith  row of L  * 1st   column of U     li1 ) ⇒

 l11 = 3, l21 = 0,  l31 = 1 
   

1st  row of U  (1st   row of L  *  jth  column of U       u1j ) ⇒
 

 l11 u12 = 0,                    u12 = 0  ⇒

 l11 u13 = 1,                u13 = 1/3 ⇒
       

2nd column of L  ( ith  row of L  *  2nd column of U    ⇒  li2  ) 

l21 u12 + l22  = 2,             l22 = 2 – 0 = 2 , ⇒

l31 u12 +l32 = 0,                 l32 = 1(0) = 0 ⇒
  

2nd row of U  
 

l21 u13 +  l22 u23 = 1       u23 = (1– 0*1/3)/2 = 1/2 ⇒
         

 3rd column of L  
 

l31u13 + l32u23 + l33 = 0     l33 = –1 * 1/3 – 0 = –1/3 ⇒   

Therefore, the linear system becomes LUx = b  as follows 
 

                      
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 1
5
2

100
2110
3101

3101
020
003

3

2

1

x
x
x

. 

                                           

Substitution 
 

Solve  Ly = b  

                 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 1
5
2

3101
020
003

3

2

1

y
y
y

  

 
1)321(3,25,32 321 =+−−==−=⇒ y y  y      
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Solve Ux = y 

                                   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
25
32

100
2110
3101

3

2

1

x
x
x

  

 

        3 2 1    1,    x 5 2 1 2 2,   x 2 3 1 3 1x⇒ =+ = − = =− − =−        
 

    Therefore, 

                                            x = .    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−

1
2
1

 

 Exercise.   Solve the linear system using Doolittle's method. 
 

 
 

            Pivoting and Scaling  
 
 

3.4 

Pivoting 
  

At each step (say k) of  the Gaussian elimination process, we need to use a multiplier    
 

                      .            )()( / k
kk

k
ikik aam =

 

If   is small in magnitude compared to  will have magnitude much larger than 
one and thus 

)(k
kka ik

k
ik ma ,)(

 
• when computing  a a  (j = k+1, n),  a rounding error introduced in the 

computation of one of the terms  a   will be multiplied by  m   compounding the 
original error.  

m aij
k

ij
k

ik kj
k( ) ( ) ( )+ = −1

kj
k( )

ik

 
• When performing the backward substitution for the solution xk , any rounding error in 

the numerator will be amplified when dividing by  a  . kk
k( )

  

To avoid the above problem, pivoting is performed by selecting a larger element for the pivot. 
 

Partial (maximum column) Pivoting 
 

In the Gaussian elimination process at stage  k, determine the smallest  p > k, such that 
 

                   
a apk

k
k i n ik

k( ) ( )max=
≤ ≤  

 

and perform  where = the kth equation, then  proceed with step k of the 

elimination process.  Thus, all of the multipliers will now satisfy 

( )kE E↔ p kE

ikm 1ikm ≤ . 
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Exercise.  Write a F95/C++/Maple/Matlab program segment to implement the elimination 
process with maximum column pivoting. 

 

Example 3.3 Solving 1
2

0.003 59.11 59.17
5.291 6.130 46.78

x
x
⎡ ⎤⎡ ⎤ ⎡

=⎢ ⎥
⎤

⎢ ⎥ ⎢− ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 using Gaussian elimination with partial 

pivoting (with 4 digit arithmetic). 
Solution   

 
    E E1 2↔ :  
 

              

0.003/ 5.291 0.00056712
0.0005672 2 1

1

2

5.291 6.130 46.78 5.291 6.130 46.78
      

0.003 59.14 59.17 0 59.14 59.14

10.00
Therefore,           

1.000

m
R R R

x
x

= =
← −

⎤ ⎤⎡ ⎡− −⎥ ⎥⎢ ⎢⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎥ ⎥⎢ ⎢⎣ ⎣⎦ ⎦
⎧ =⎪⎪⎨⎪ =⎪⎩

 

       

     Check.   Exact solution                                  x1 =  10,   x2= 1 
                       Gaussian elimination without pivoting     x1 = –10,   x2= 1.001 
       
 

Complete Pivoting 
 

At stage k, determine the smallest p, q > k, such that 
 

                 ( ) ( )

,  
maxk k

pq ijk i j n
a a

≤ ≤
=  

 

and perform ,
 
then proceed with step k of the elimination process.  ( ,  k p kE E C C↔ ↔ )q

 
Scaling and Scaled-column Pivoting 
 

If the elements of A vary greatly in size, the pivoting strategy described above may fail. To 
deal with this problem, two methods may be used. 
 

a)  Scaling matrix  A  so that the elements vary less, usually by multiplying the rows 
and columns by suitable constants.  This process will generally change the choice of 
pivot elements when pivoting is used with Gaussian elimination. 

 
b)   Scaled - Column Pivoting Technique 
 

The first step in this procedure is to define for each row a scale factor  si  by 
 

                     
1  
maxi ij n js a
≤ ≤

=     
 

If for some i we have  si = 0, then the system has no unique solution, since all entries 
in the ith row are zero. If all  si are not equal to zero, we continue the Gaussian 
elimination process using matrix A. But we choose the pivot element in step k by 
determining the smaller  p > k, such that  
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( ) ( )

max
k k

pk ik

k i np i

a a

s s≤ ≤
=   

 

replacing the definition in partial pivoting. This process is to select the pivotal 
equation from the available (n – k) candidates as the one that has the absolutely largest 
coefficient of  xk relative to the size of the equation. 

  
 

Example 3. 4   Solve   30 00 591400
5 291 6 130

591700
46 78

1
2

.
. . .−

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
= ⎡
⎣⎢

⎤
⎦⎥

x
x

 using scaled column pivoting (the system is obtained by multiplying the 1st 

equation in example 3. 3 by 104)  
 

    Solution 
 

          s s1 30 591400 591400 6 130= = =max( , ) , .     2  
 

          

a
s

a
s

a
s

a
s

11

1

4 21

2

11

1

21

2

30
591400

0 5073 10 0 863= = =

<

−. * , .   

 
 

   Therefore,   1 2E E↔
 

                5 291 6 130
30 00 591410

48 78
591700

. .
.

.−⎡
⎣⎢

⎤
⎦⎥

     , 10      1x ⎛ ⎞⎟⎜⇒ = ⎟⎜ ⎟⎜⎝ ⎠

   while the result obtained by  Gaussian elimination with partial pivoting is  . 
10
1

x
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 
 

            Permuted LU Factorization 
 
 

3.5 

If the matrix A is such that a linear system Ax = b can be solved using Gaussian elimination 
that does not require row interchanges, then there exists a direct LU factorization of A and the 
system can be solved by the LU method presented in 3.3. In the following, we will show that 
if row interchanges are required to control the rounding error resulting from the use of finite-
digit arithmetic, there also exists a LU method, namely the permuted LU factorization method 
corresponding to the Gaussian elimination with pivoting. 

 

We begin the discussion with the introduction of a class of matrices that are used to rearrange, 
or permute, rows of a given matrix. 

 

Permutation Matrices 
 

A permutation matrix P is a square matrix having the same form as the identity matrix except 
that the order of the rows is different: 
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                                                                     (3.5) P
k
k

kn

=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

e
e

e

1
2

where eki   denotes the kith row  of the n n× identity matrix.  
 
For example, if  k1= 2,  k2 = 3,  k3 = 1,  then 

                                 P =
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

e
e
e

2
3
1

0 1 0
0 0 1
1 0 0

Property of Permutation Matrix 
 

(i) A permutation matrix is an orthogonal matrix, i.e., TA A I= , and the inverse of the 
permutation matrix is the same as its transpose ( 1 TA A− = ).  

 

(ii) Left multiplying a matrix by a permutation matrix P has the effect of interchanging 
(permuting) the rows of the matrix. More specifically, let k1, k2, …..., kn  be a 
permutation of the integers 1, 2,…..., n,  and define  P as in (3.5),   then 

 

               

,1 ,2 ,1 1 1

,1 ,2 ,2 2 2
,

,1 ,2 ,

{ }

k k k n

k k k n
k ji

k k k nn n n

a a a

a a a
PA a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…

# # #
…

   

 

   i.e,  the ith row  of the new system is the kith row of the original system. 
 

  

Example 3.5   Let 
11 12 131

3 21
2 31

1 0 0
 0 0 3 ,      = . 

0 1 0

a a a
P A a

a a a
22 23
32 33

a a
⎡ ⎤⎧ ⎫ ⎡ ⎤⎪ ⎪⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪= =⎨ ⎬ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎣ ⎦⎪ ⎪⎩ ⎭ ⎣ ⎦

e
e
e

 

Then 
11 12 13
31 32 33
21 22 23

=
a a a

PA a a a
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

 

That is, left multiplying A by P has the effect of interchange row 2 and row 3. 
 
Maximum Column Pivoting & Permuted LU Factorization 

 

Application of the elimination phase of the Gaussian elimination with maximum column 
pivoting is equivalent to the LU factorization of a permuted version of the coefficient matrix. 
Thus the Gaussian elimination with maximum column pivoting algorithm can be used to find 
the permuted LU factorization. 

 
Given  Ax= b, by premultiplying P,  we have  
 

                    .PAx Pb=
Let     PA = LU,   then 

                           { = ,=               = .
Ly PbLUx Pb Ux y⇒
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Suppose after row interchanges, the order of equations to be processed is k1, k2, ..., kn where 
ki denotes the kith equation of the original system, then  

 

P Pb

b
b

b

k
k

kn

k
k

kn

=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

e
e

e

1
2

1
2 and  .  

 

Thus to determine Pb in solving Ly = Pb, we only need to create an array (permutation 
vector) p(1:n) to store the values  k1, k2, ...,  kn  and  hence 

 

                            . Pb

b
b

b

b p
b p

b p n

k
k

kn

=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

1
2

1
2

( ( ))
( ( ))

( ( ))
 

Program Construction (Doolittle’s method) 
 

1)  Obtain the permuted LU matrices by the Gaussian elimination with maximum column 
pivoting. A permutation vector p is also produced to indicate the order in which the 
original equations are to be processed.  

2) Forward substitution 

    

Ly Pb y b p i l yi i
j

i
= ⇒ = −

=
j j

−

∑                [ ( )]
1

1

 

3) Backward substitution                yUx =
1

1      
n

i i ij
j iii

jx y u y
u = +

⎛ ⎞
⇒ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
Notes:  Numerical algorithms for the above permuted LU factorization and substitutions are 

given in Exercise Q3.6. 
 

 

            Special Types of Matrices  
 
 

3.6 

For strictly diagonally dominant and positive definite matrices, Gaussian elimination can be 
performed without row interchanges. 

 
Strictly Diagonally Dominant Matrix (S.D.D) 
  

Definition:  A is (strictly) diagonally dominant iff  aii ij
j i

≥
> ≠

a∑
( )

  for all i. 

 
Theorem 3.2: If A is a strictly diagonally dominant matrix, then A is nonsingular.  
 
Theorem 3.3:   If A is diagonally dominant and nonsingular, then Gaussian 

elimination can be performed on any linear system  Ax = b to obtain 
its unique solution without row or column interchanges. 
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Positive Definite Matrices 
 

Definition:   A symmetric n x n matrix A is positive definite iff  xtAx > 0 for every n – 
D column vector x ≠ 0 . 

 
Properties:   If A is an n n×  positive definite matrix, then 
           (a)  A is nonsingular 
           (b)  aii > 0  for all  i 
           (c)  A is symmetric, A = At 

 
Theorem 3.4: The n x n symmetric matrix A is positive definite iff  Gaussian 

elimination without row interchanges can be performed on the linear 
system Ax = b with all pivot elements positive.  Moreover, the 
computations are stable with respect to the growth of rounding error. 

 
The Cholesky Factorization and Solution of Ax = b. 

 
If  A is symmetric,  

                             
A LU A U L L U U L l ut t t t t

ii ii= = = ⇒ = = =, ,  .

l

 

Thus, If A is positive definite, A can be factorized in the form of LLt where L is a lower 
triangular matrix with nonzero diagonal entries. 

 
 

Formulation 
 

(a)  LLt factorization 
 

   
From     A = LLt    for  i = 1, 2,…, n  and  ,   by multiplying the ith row of  L and the 

jth column of  , we have 

j i≤
tL

                              
a l l l l lij ik

k

j

jk ik
k

j

jk ij jj= = +
= =

−

∑ ∑
1 1

1

 
 .                                               (3.6)    

 

From the above, for i=j=1, we have 
 

                                            l a11 11= . 
       

Now suppose row 1, row 2,…, row i-1 of L have been determined, we can derive, from 
(3.6), the following recurrence formulae to determine the ith row of L.    
 

                   
1

1

1 j

ij ij ik jk
jj k

l a l l
l

−

=

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ,      for  j=1 to i-1, 

 

                                          .      
1

2 2

1

i

ii ii ik
k

l a
−

=

= −∑ l
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b) Solving Ax= b 

   As  ,           t t
t

Ly b
A LL Ax b LL x b

L x y

⎧ =⎪⎪= = → = → ⎨⎪ =⎪⎩
 

 To solve  Ly=b,  multiplying the ith row of L with y yields 
 

                   . 

1
2

1 2 , 1( , ,..., , ,0,...,0)i i i i ii i
i

n

y
y

l l l l by

y

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

#

#

                                  Therefore,    
1

1

1         ( 1,  2,...,  ).
i

i i ij j
ii j

y b l y i
l

−

=

n
⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

 

      Remark:   From the above, we can determine  y1, then  y2, …, yn 
 

 To solve  multiplying the ith row of L,tL x y= t with x yields 

                        . 

1
2

( 1)(0,...,0, , ,..., )ii i i ni i
i

n

x
x

l l l yx

x

+

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

#

#

  Therefore,  
1

1      ( ,  1,...,  1).
n

i i ji j
ii j i

x y l x i n n
l

= +

⎡ ⎤
⎢ ⎥= − = −⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

 

 Remark:  From the above, we can determine  xn ,  then  xn-1, …, x1. 
 

Algorithm  (exercises) 
 

Operation Count 

Number of * / ÷ operations: 
3 2 2
6 2 3

n n n+ − ; 

Number of + / – operations:
3

6 6
n n

− ; 

Number of  operations: n. 
 

LDLt Decomposition and Solution of Ax = b 
 

• The square roots in the LLt decomposition can be avoided by using a slight modification, 
i.e., find a diagonal matrix D and a new lower triangular matrix L with one's on the 
diagonal such that A LDLt=  .  

 

• This method applies for not only the positive definite matrices but also certain symmetric 
matrices. 
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Formulation 
 
(a) LDLt decomposition 
 
   From A = LDLt , for i = 1, 2, …, n and  ,    j i≤
 

                        a l d l l d l d lij ik k
k

j

jk ik k
k

j

jk j ij jj= = +
= =

l
−

∑ ∑
1 1

1
 ,  

 
thus we have for 
 

                          i =1 ,  j =1,                                          → =d a1 11
 

                     i = 2, 3, ..., n

   1

1

1
2

1

11,  2,...,  1          

                                

j

ij ij ik k jk
j k

i

i ii k il
k

j i l a l d
d

j i d a d l

−

=

−

=

⎧ ⎡ ⎤⎪⎪ ⎢ ⎥⎪ = − → = −⎪ ⎢ ⎥⎪ ⎢ ⎥⎪ ⎣ ⎦⎪⎨⎪

l

⎡ ⎤⎪⎪ ⎢ ⎥= → = −⎪ ⎢ ⎥⎪⎪ ⎢ ⎥⎪ ⎣ ⎦⎩

∑

∑
 

 
b) Solving Ax= b 
 

As  1,                 t t
t

Ly b
A LDL Ax b LDL x b

L x D y−

⎧ =⎪⎪= = → = → ⎨⎪ =⎪⎩
 Hence, we can derive 
 

 

              
1

1

         ( 1,  2,...,  )
i

i i ij j
j

y b l y i n
−

=

= − =∑
 

                   
1

     ( ,  1,...,  1)
n

i
i ji j

i j i

yx l x i n n
d

= +

= − = −∑  

 
Algorithm  (exercise) 

 
Operation Count 

 

Number of * / ÷ operations: 
3 72
6 6

n n+ − n ; number of  + / – operations:
3

6 6
n n

− .   
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Tridiagonal Matrix (Band matrix, band width = 3) and Tridiagonal Systems of equations  

 
 

Definition:    A aT i= j  is tridiagonal if   aij = 0   for  i j− > 1. 
 

 
Factorization:  Provided no row interchanges are required for AT, we can factor AT  as 
      

           

1 1
2 2 2

3 3 3

1 1 1

1 1
2 2 2

3 3 3

1 1 1

1
1

1 
1

1

n n n
n n

n n n
n n

d c
a d c

a d c

a d c
a d

a
a

a
a

α β
α β

α β

α β
α

− − −

− − −

⎡ ⎤
⎢ ⎥Ο⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥Ο⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡
⎢ ⎥ ⎢Ο Ο⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢Ο Ο⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

% % %

% % % %

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

 
We multiply the L and U matrices to obtain a way to compute α i  and βi    recursively. From 
the above equations, we have 

          

                                                      
1 1 1 1 1

1

,  
     ( 2,  3,...,  )

                 ( 2,  3,...,  1)
i i i i

i i i

d c
d a i n
c i

α α β
β α

α β
−

= =
= + =
= = n−

     

    which give rise to the following recurrence formulae, 
 

                                                        
 

1 1 1 1 1

1

1

, /

          ( 2,  3,...,  1)
/

i i i i

i i i

n n n n

d c
d a

i n
c
d a

α β α

α β
β α

α β

−

−

= =
⎫= − ⎪⎪ = −⎬⎪= ⎪⎭

= −
 
Substitution   

     

                                        bLUxbxAT =⇒=           
                      

 1 1 1

1

Forward substitution               /                                                            
                                                                 ( ) /        (i i i i i

Ly b y b
y b a y i

α
α−

= ⇒ =

= − = 2,  3,...,  )n
                       

 
1

Backward substitution                                                                      
                                                                     ( 1,  2,...,  

n n

i i i i

Ux y x y
x y x i n nβ +

= ⇒ =

= − = − − 1)
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            Gauss-Jordan Elimination and Inverse of Square Matrices  
 
 

3.7 

 
Gauss-Jordan Elimination 
 

This process is much the same as regular elimination including the possible use of pivoting 
and scaling.  It differs in eliminating the unknowns in equations below the diagonal as well as 
above it. The Gauss-Jordan procedure converts A b|  to I b n| ( ) , so that at the completion of 

the elimination, x= b(n).  Solving Ax= b by this technique requires about n multiplications 
and divisions, this is about 50% more than the regular Gaussian elimination.  

3 2/

 
Matrix Inverse 

 

{ }
{ }

1 1
1 2

1 2

Denote   the  columnof ,      then  ,  ,...,  
 the  column of ,          then  ,  ,...,  .

i n

i n

x ith A A x x x
e ith I I e e e

− − =
=

 

 
As  AA–1= I, we can obtain A–1 by solving the following n linear systems 

      

                                               Axi=ei 
 

which require (* / ÷) operations for LU decomposition, n*n3 / 3 / 3 n n− 2 (* / ÷) operations 
for substitution.   So calculating   A–1 requires about  4 3  operations.   If we utilize               
A–1=U –1L–1 to calculate A–1 we only need n3 operations. 

3n /  (* / )÷

 
Note 
 To choose a method for solving a linear system, we generally consider the following two 

points. 
 

(a)  Use special techniques for special types of matrices. 
 

(b)  For general matrices, use triangular factorization with scaled-column pivoting. 
 

 
 

            Solution of Linear Systems using Maple/MATLAB  
 
 

3.8 
 

Solution of Linear Systems using Maple 
 

By the permuted LU factorization method, Ax=b is solved (in Maple) by the following steps 
 

(a) Factor A into PLU so that the system becomes PLUx=b  
                                                                  where P is a permutation matrix ;
(b) Solve PLy=b (by letting Ux=y), i.e, solve  (as );TLy P b= 1 TP P− ≡
(c) Solve Ux=y 
 

(Note: in Maple, pivoting is done only when a leading entry is zero)
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The following Maple functions can be used to perform the above work 
 
         (P,L,U):=LUDecomposition(A):  factor A into PLU   & store the results in P,L and U; 
 

         y:=ForwardSubstitute(L, Ptb) :   solve      & store the solution in vector  y TLy P b=
 

         x:=BackwordSubstite (U, y) :     solve  Ux=y        & store the solution in vector x 
 
As the above functions are in the package LinearAlgebra, the following statement should be
declared before using the functions. 
 

          >  with(LinearAlgebra): 
 

Example.  Solve 

1

2

3

4

0 2 1 1 7
0 0 3 2 1

  = 
1 2 1 0 6
2 1 0 1 7

x
x
x
x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
> with(LinearAlgebra):
>
> A:=<<0 | 2 | 1 | 1 >, < 0| 0 | 3 | 2 >, <1 | -2 | 1 | 0 > ,<2 | 1 | 0 | 1  >>:
> b:=<<7>, <1>, <-6>, <7>>:
> (P,L,U):=LUDecomposition(A, method=GaussianElimination, output=['P','L','U']):
> Ptb:=Transpose(P).b:
> y:=ForwardSubstitute(L,Ptb):
> x:=BackwardSubstitute(U,y);

1
3

:
1

2

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

   which yields the solution      

Notes: The arguments “method=...” and “Output=…” are optional. By default, the 
method used is the Gaussian elimination with partial pivoting method and the 
outputs are P, L and U.  

 
 
Solving linear Systems using MATLAB 
 

In MATLAB, a non-singular system Ax=b can be solved directly by  
 

                   x=A\b 
 

or by the permuted LU method via the following 3 steps 
 

           (a) Factor PA into LU  by  [L,U,P]=lu(A)    so that the system becomes LUx=Pb  
 

    (b) Solve Ly=Pb         by   y=L\(P*b)          
 

   (c) Solve Ux=y     by    x=U\y        



Ch 3  Direct Methods for Systems of Linear Equations    49 

Example.  Solve 
1

2

3

1 1 0 3
0 0 1   = 1
3 0 1 2

x
x
x

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎦

 

 

⎣

>> A=[1  1  0; 0  0  1; 3  0  1]; 
>> b =[3; -1; 2]; 
>> [L, U, P] =Lu(A); 
>> y=L\(P*b); 
>> x=U\y   
  

which yields the solution    [1 2 1]Tx = −
 

_____________________________________________________________________________ 
 

 
EXERCISE 3 

 

Q3. 1  Given  
 
   . 

1 1 0
2 4 2 ,

0 1 2
A

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜= − − ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠
b = −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0
1

1 5.

 a)  Solve Ax = b by Gaussian elimination without row interchanges 
 b) Construct the LU factorization of A from the results of Gaussian elimination process in (a). 
 c)  Solve Ax = b by first factorizing A into LU with uii= 1.   
 

 

Q3. 2   Solve the following linear systems using  
    a)  Gaussian elimination (GE.), (2- digit rounding arithmetic) without pivoting, 
    b)  GE. with maximal column pivoting ( 2- digits), 
    c)  GE. with scaled-column pivoting ( 2- digits) 
    d)  Exact arithmetic and determine which part, (a), (b), or (c) is the most accurate. 

                                                             10 1
2

2− + =
+ =

⎧
⎨
⎩

x y
x y

x x x
x x x
x x x

1 2 3
1 2 3
1 2 3

2 3 1
2 3 4
3 4 6 2

+ + =
+ + = −
+ + =

⎧
⎨
⎪

⎩⎪
1

Q3. 3  Using the compact scheme (lii= 1), factor matrix A, solve Ax = b and calculate det A. 
 

                             ,   . A =
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256

b =
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2
10
44

190
 

Q3. 4   Determine which of the following matrices are 
   (i) symmetric,   (ii) singular,    (iii) strictly diagonally dominant,     (iv) positive definite. 

                       a)  ,     (b) ,      (c)  ,    (d) ,  2 1
1 3
⎡
⎣⎢

⎤
⎦⎥

2 1 0
0 3 2
1 2 4−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−

⎡
⎣⎢

⎤
⎦⎥

2 1
1 3

−⎡
⎣⎢

⎤
⎦⎥

1 2
1 2

 

Q3. 5 Find a factorization of the form A= LDLT for matrix 
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                                       A =
−

− −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1 0
1 2 1

0 1 2
_______________________________________________________________________________________________________________________________________ 

 
Programming 
 
 

Q3. 6 The attached subroutines LUFACT and SUBST are for solving Ax = b.  The routine LUFACT 
computes a LU factorization of A with scaled-column pivoting PA=LU. The routine SUBST 
calculates x by forward and backward substitutions:  Ly= Pb, Ux= y. Document and modify 
the program such that (1) all real values are stored with at least 12 digits of precision; (2) 
whole array operations are used whenever possible; (3) use assumed-shape arrays in 
procedures.  Then write a main program which reads entries of A and b from a data file and 
calls the subroutine to solve the following system 

 

                           3.3330x1 + 15920 x2 –10.333 x3 =15913 
                            2.2220x1 + 16.710x2+9.6120 x3 = 28.544 
                            1.5611x1 + 5.1791x2 +1.6852x3 = 8.4254 
 
     

Algorithm for Subroutine LUFACT  
 
This algorithm uses the Gaussian elimination process with scaled-column pivoting to find the 
permuted LU factorization of A (namely, to find P and the LU factorization of PA) where 
 U is the upper triangular matrix obtained from the elimination process; 
  L is the lower triangular matrix which is the collection of the multiples mij
 

Step 1 Set s i Max a
j n ij( ) =

≤ ≤1
,  (determine the size of each equation). 

Step 2 For k =1 to N –1 do step 3 to step 6  (set 1st, ...., (n –1)th column below diagonal to zero) 

Step 3      Find the (smaller)  such that P k≥ maxpk ik
k i np i

a a
s s≤ ≤

=   

                     (select pivot element for the step)   
 

Step 4     If a  then  pk = 0
         write '(IERR=1, A is singular)' then return. 
Step 5     Else  
        E E P Pk p k↔ ↔, p , (row interchange)    

             (Pk records the order in which the equations are to be processed) 
 

Step 6        For i k n= +1 to   (do usual Gauss elimination process for the kth step) 

           Set   ( )( )m
a
a

a I kik
ik

kk
= ⇒        ,  

           Set     ( )      1,  ......,  ij ij ik kja a m a j k n= − = +
 

Step 7  If a , return "(IERR=1: A is singular)' nn = 0
Return 
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Algorithm for SUBST  
   

      

 

(as Pb = b(pi)) 1

i
1

For 1 to  do

        Forward substitution
                  ( )

i

i ij j
j

i n

y b p a y
−

=

⎫= ⎪⎪⎪⎪⎪⎬⎪= − ⎪⎪⎪⎪⎭
∑

     
i

1

For  to 1 by 1 do

    Backward substitution1            
n

i ij j
ii j i

i n

x y a x
a

= +

⎫= − ⎪⎪⎪⎪⎛ ⎞⎪⎟⎜ ⎬⎟⎜ ⎪⎟= −⎜ ⎟⎪⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎪⎭
∑  

      End 
 
Q3.7 Based on the subroutines LUFACT and SUBST, write subroutines LU1 and SUB1, respectively 

for computing the LU factorization with partial pivoting (without scaling) and for finding 
solution of Ax = b by forward and backward substitution.  Then, write a main program to call 
the subroutines to solve the linear system in Q3. 6. 

 

Q3.8 Based on subroutines LUFACT and SUBST, write subroutines LU2 and SUB2, respectively for 
computing the LU factorization without pivoting and for finding solution of Ax = b by forward 
and backward substitution.  Then, write a main program to call the subroutines to solve the 
linear system in Q3. 6. 

 

Q3.9 Write a subroutine for LDLT factorization of a square matrix A, and a separate subroutine for 
solving equations Ax= b by forward and backward substitutions using the LDLT factorization.  
Then write a main program to call the subroutines to solve the following linear system. 

 

            4x1 +   x2 – x3           =  7,                                  
          x1 + 3x2 – x3            =  8, 
                         –x1 – x2 + 5x3 + 2x4 = –4, 
                                             2x3 + 4x4  =  6.  
 

Algorithm for factorizing an  n n×  matrix A into LDLT decomposition 
 

Input  n and matrix A 
Output  L 
Set   d a1 1= 1
For  i = 2 to N do 

   set  
1

1

1       1, 2,  ..., 1
j

ij ij ik k jk
j k

l a l d l j i
d

−

=

⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥

−
⎣ ⎦

∑  

   set   d a d li ii k ik
k

i
= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

−

∑ 2

1

1

Return 
 

 
 



52 

Q3.10 Write a subroutine STRIDEQ for solving Tridingonal linear systems, and then write a main 
program to call the subroutine to solve     

    

              .        (Answer: ) 
2 1 0 0
1 2 1 0

0 1 2 1
0 0 1 2

1
0
0
1

−
− −

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x ( )1,  1,  1,  1 Tx =

     
            Subroutine header:   SUBROUTINE STRIDEQ (N, A, D, C, B, X) 
 

     where  N   =    Input. Number of equations. 
          A(N) =  Input. Before entry, must contain the sub-diagonal element of A (ai). T
          D(N) =  Input. Before entry, must contain the main diagonal element of AT(di). 
             C(N) =    Input. Before entry, must contain the super-diagonal element of AT(ci). 
          B(N) =  Input. Before entry, must contain the element of the right hand side (bi). 
          X(N) =  Output. On exit, contain the solution of the tridiagonal system.    

 
Algorithm for solving Tridiagonal Systems Atx = b  

         Set 1
1 1 1

1
      cdα β

α
= =   

         For  2  to 1i n= −
            set  α βi i i id a= − −1 

               i
i

i

c
β

α
=  

         Set  α βn n n nd a= − −1 

              1
1

1

by
α

=  

         For i= 2 to n do 

     
       set

  
y b a yi

i
i i i= − −

1
1α  

         Set n nx y=  
         For i= n –1 to 1 by –1 do  
            set x y xi i i i= − +β 1  
         Output ( )1, 2 ,...,  nx x x  

 
Q3.11  Solve the linear systems in Q3.1 and Q3.6 using Maple. 
 
Q3.12  Solve the linear systems in Q3.1 and Q3.6 using MATLAB. 
 
_____________________________________________________________________________ 
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       Norms and Error Analysis for Linear Systems 

CHAPTER 

4 
 

 

In this chapter, we first introduce the concepts of vector norms, matrix norms and spectral radius 
of matrices in sections 4.1-4.3. Then in section 4.4, we use the notions of vector norms and matrix 
norms as well as spectral radius to estimate the prior and posterior errors for the solutions of linear 
systems. Finally, in section 4.5, we introduce the residual correction method for solving linear 
systems utilizing the LU factorization method. 
 

 

            Norms of Vectors  
 
 

4.1 

Solving a system of linear equations using computer can only yield, because of round off errors, 
approximate solution . To analyse whether an approximate solution vector is close enough to the 
solution of the system, we need a means for measuring the distance between two n-dimensional 
vectors  and x, or in the other words, the size of an n-dimensional vector e= - x  where 

x

x x
 

1 2 1 2[ , ,..., ] , = [ , ,..., ] .t t
n nx x x x x x=x x  

 

One of the ways, which we are familiar with, is to use the Euclidean norm 
 

2 2
1 1 2 2( ) ( ) ( n nd x x x x x= − = − + − + + −x x 2)x  

 

which represents the distance between two points x  and  in .   But there are many situations, 
in which it is more convenient to measure the size of a vector in other ways. Thus we introduce a 
general concept of the norm of a vector. 

x n

 
Definition of Vector Norms  

 

Let    [ ]

1

2
1 2,  ,  ....,        t n

n

n

x
x

x x x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

x

 

      A norm of a vector on is a function, n ⋅  , from into with the following properties. 

 
n

 (i) 0≥x           for all  x n∈R  

 (ii) 0=x           if and only if (iff) 0=x  

 (iii) α      for all  α=x x α ∈ and  ∈x n                                                      (4.1) 

 (iv) + ≤ +x y    for all  x y,  n∈R  (Δ inequality) y x
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Lebesgue Norms ( pl  norms) 
 

Let  , then   1 2( , ,..., )T
nx x x x= ∈ n

                               
1/

1=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑x

p
n

p
ip

j
x  

 

defines a family of vector norms, called Lebesque norms or pl  norms. 

       For  p=1,  we have the sum   norm                       1( )l
1

1

n

i
j

x
=

= ∑x .                      (4.2) 

       For  p =2, we have  the Euclidean  norm             2( )l
1/ 2

2
2

1
 

n

i
j

x
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑x .                 (4.3) 

       For  we have the Chebyshev  (  norm        ,p = ∞ )∞l 1
max ii n

x
∞ ≤ ≤
=x  .                (4.4) 

 
Remarks  To show that a particular function is a norm, one must prove that properties (i) to (iv)   

hold for the function.  In the following, we give an example. 
 

Example 4.1     Prove that 
∞⋅  is a vector norm. 

Proof Let  [ ] [ ]1 2 1 2, , , , , , ,t t
n nx x x y y yx y= = . 

 

Then properties (i)-(iii) hold immediately and we now consider property (iv). From the  
definition of 

∞
⋅ , we have 

 

                    i i1
max +

i n
x yx y

∞ ≤ ≤
+ =  

                                 { }i i1
max

i n
x y

≤ ≤
≤ +  

                                 i i1 1
max max

i n i n
x y

≤ ≤ ≤ ≤
≤ +  

                                 
∞ ∞

= +x y  . 
Hence, property (iv) holds.                                                           

 
Example 4.2    Given    .  Find  the  [ 1,  2,  1]= −x pl  norms for p = 1, 2 and . ∞

Solution   
                                    

1
1 2 1 4= − + + =x  

                                 2 2 2 1/ 2
2

( 1) + 2 + 1 6⎡ ⎤= − =⎣ ⎦x  

                                 ( )max 1 , 2 , 1 2
∞
= − =x . 

Exercise  Show that

1
2

2
2

1=

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
∑x

n

i
j

x is a norm.  The Cauchy- Buniakowsky- Schwarz inequality, 

as given below, could be useful.     
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1 1
2

2

1 1 1
 

= = =

2
2⎧ ⎫ ⎧ ⎫≤ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑ ∑

n n n

i i i i
i i i

x y x y                       (4.5) 

 for any . 1 1 1 1( , , ) , ( , , ) ∈T T
n nx x x y y y n

 
Distance Between Two Vectors 
  

If  x  and  y are two vectors, then the ‘distance’ between  x  and  y is given by the vector norm 
−x y   

 
Example 4.3   Given .  Find  the  and  l  distances. ( 1,  2,  1) ,   (1,  1,  3)= − =x yT T

1 2,l l ∞
 

Solution    distance:   1l 1
1 1 2 1 1 3 5− = − + − − + − =x y  

                    distance:  2l
2 2 2

2
(1 1) ( 2 1) (1 3) 13− = − + − − + − =x y  

  distance:  l∞ { }ax 1 1 ,  2 1 ,  1 3 3mx y
∞

− = − − − − = . 
 
Sequence of Vectors and Convergence  

 
Definition    A sequence  of vectors { }( )

1

k

k

∞

=
x in  is said to converge to  with respect to          n x

the norm ⋅  if, for any given 0,ε > there exists an integer ( )N ε  such that 
( )k ε− <x x  for all    ( )k N ε≥ . 

 
Theorem 4.1   The sequence of vectors { }( )

1

k

k

∞

=
x  converges to x in  nR  with respect to 

∞
⋅   

                        if and only if  ( )lim k
ik ix x

→∞
=   for each   i  =1, 2,…, n. 

 
Proof    

(1o)   (⇒Necessary condition :   if   { }( )

1

k

k

∞

=
x converges,  ( )lim

→∞
=k

i ik
x x ) 

If   ( )    with respect to  kx x
∞

→ ⋅ , then given 0,ε > ∃ an integer ( )εN   such that 

            ( ) ( )maxk k
i ii

x xx x ε
∞

− = − <    for all   ( )ε≥k N ,  

which implies that 
             ( ) ε− <k

i ix x  for each i when ( )ε≥k N . 
( )  lim

→∞
⇒ k

in
= ix x   for each i. 

 

(2o)   (⇐  Sufficient condition :  if   ( )lim k
i in

x x
→∞

= ,   { }( )

1

k

k

∞

=
x  converges ) 

If  ( )lim
→∞

=k
ik ix x  for every i=1, 2, …, n,  then for any given 0,ε > ∃ an integer ( )εiN   

such that     ( ) ε− <k
i ix x       whenever  ( )ε≥ ik N . 
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Define                { }( ) max ( ) ,ii
N Nε ε=  then we have 

                ( )max k
i ii

x x ε− <       for all ( )ε≥k N . 
 

 Thus,                   ( )kx x ε
∞

− <            for all ( )ε≥k N . 
 

This implies that  {  converges to x.                                    }( )

1
x

∞

=

k

k
 

Example 4.4 Let  be defined by ( ) 4x ∈k { }( ) ( ) ( ) ( ) ( )
1 2 3 4, , ,x =

Tk k k k kx x x x 2

1 3(1,  2 ,  ,  sin )−= + k Te k
k k

. 

 Find  the vector  x  that  the above sequence converges to. 
 

Solution                         lim 1 1,=
1lim 2 2

k k→∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

    ( )2

3lim 0, lim sin 0.−

→∞ →∞

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

k

k k
e k

k
 

 

    Therefore  { }    with respect to  ( ) (1,  2,  0,  0)x →k T
∞
⋅ . 

 
Equivalence of  Vector Norms with Respect to Convergence  

 

The following theorem shows the equivalence of 
∞
⋅  and 

2
⋅  with respect to convergence.  

 
Theorem 4.2    For each   x ,   ∈ n

2
x x x

∞ ∞
≤ ≤ n   . 

          
            Proof    let mx be the element with maximum magnitude of the vector x, then 

                                           
1
max i mi n

x xx
∞ ≤ ≤
= =     

    

           Hence,              2 2 2 2 2

1
x x

∞ ∞
=

= = ≤ ≤ =∑
n

m m i m
i

x x x nx n 2  

             Thus                  2 2

2
x x x

∞ ∞
≤ ≤ n 2  

 

              then                  
2

nx x x
∞
≤ ≤

∞
.                            

       
Remark 1    In general, all norms on  are equivalent with respect to convergence,  i.e.   if n ⋅  

and '. are any two norms, then 

          '( ) ( ) with respect to     with respect to  .k k→ ⋅ ⇔ →x x x x ⋅  
 
Remark 2  (Application of the convergence equivalence theorem)   Sometimes it is a lot easier 

to show convergence with respect to 
∞
⋅  than with respect to 

2
⋅ .  But by the 

equivalence theorem, the former prove the later (and vice-versa). 
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Example 4.5   In example 4.4, we find that 

( ) 1 31,  2 ,  ,  sinx −⎛ ⎞= +⎜ ⎟
⎝ ⎠

t
k e k

k k
k converges to with respect to (1,  2,  0,  0)  t=x

∞
⋅  .       

So by the above theorem, we can conclude that  also converges to  x   with respect to ( )x k
2
⋅ . 

 
 

            Norms of Matrices 
 

 

4.2 

Definition of matrix norm     
 

A matrix norm on the set of all n x n matrices is a real-valued function, denoted by ⋅  and 
defined on the set that satisfies for all n x n matrices A and B and real numbers α : 

(i)    0≥A  

(ii)   0 iff  0= =A A  

(iii)  α α=A A  

(iv)  + ≤ +A B A B  

(v)   ≤AB A B                                   (4.6) 
 

Remark   From (iv), − ≥ −A B A B   

   
Proof :        

.

A A B B A B B

A B A B

= − + ≤ − +

⇒ − ≥ −
 

 

Natural Matrix Norms 
 

Matrix norms can be obtained in various ways.  Here we present one of the methods based on the 
concept of  vector norms.  
 
Theorem 4.3   (definition of natural matrix norm)  If  ⋅  is any vector norm on  then  ,n

               
1

maxA A
x

x
=

=   

  defines a matrix norm on the set of real n x n matrices, and is called the natural 
matrix norm associated with the vector norm.  

 

Remark   Associated with the  and  vector norms, we have the following 2,l l∞ 1l l∞  and  
matrix norms: 

2l

                
1

maxA A
x

x
∞

∞ ∞=
= ,                              (4.7) 

 

                
2

2 1
max

2
A A

x
x

=
= ,                                                                   (4.8) 

 

                 
1

1 1
max

1
A A

=
=

x
x .                              (4.9) 
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Corollary    A  can also be calculated as   

                                max
A

A
x 0

x
x≠

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟                         (4.10) 

                      and                                  A A≤x x .                       (4.11) 

   Proof    Suppose , and let 0x ≠ =
xy
x

, then  1=y . 

 

     Thus                    
1

maxA A
y

y
=

=  

                                     
0 0

max max
A

A
x x

xx
x x≠ ≠

= =  

 

                       
A

A⇒ ≥
x

x
 

                                    A A⇒ ≤x x .                                       
 
Evaluation of 

∞
A  and 

1
A  

 
The  norm of a matrix has an interesting representation with respect to the entries of the matrix.  ∞l
 

Theorem 4.4    If ( )ijA a=  is an  matrix, then    n n×

             
1 1
max

n

iji n j

A
∞ ≤ ≤ =

= ∑ a (maximum absolute value row sum) 

 
Theorem 4.5   If  ( )ijA a= is an  matrix, then  n n×

               1 1 1
max | |

n

ijj n i
A a

≤ ≤ =

= ∑    (maximum absolute value column sum) 

 
Proof  of Theorem 4.4   

 Let          
1 1
max

n

iji n j

aμ
≤ ≤ =

= ∑   and   be such that x 1x
∞
= . 

Then        
1 1
max ( ) max

n

i ii n i j
j jA A ax x

∞ ≤ ≤ =

= = ∑ x  

      ( )
1 1

max max max
n n

ij j ij ji ij j

a x a x
= =

≤ ≤∑ ∑ j
 

              μ μ
∞

= =x . 
 

So             x μ
∞
≤A   for all  x 
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∴              
1

maxA A μ
∞

∞ ∞=
= ≤

x
x                                                            (4.12) 

 
On the other hand, suppose at row p 

                              
1

n

pj
j

a μ
=

=∑   (max row sum) 

and  x  is those with  

                               1 if 0
1 if 0.

pj
j

pj

a
x

a
≥⎧

= ⎨− <⎩
 

Then      1x
∞
=   and    pj j pja x a=   for   j =1, 2, …, n. 

 

  
1 1 1

max
n n n

ij j pj j pji j j j
A a x a x ax μ

∞
= = =

= ≥ =∑ ∑ ∑ =  

 

  
1

maxA A
x

x μ
∞

∞ ∞=
= ≥                                                   (4.13) 

 
Equations (4.12) and (4.13) prove the theorem.                                                                    
 

Exercise.   Prove  Theorem 4.5. 
 

 

Example 4.5    Given  
1 2 1
0 3 1
6 1 1

A
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

− ,    find   
∞

A and 
1

A . 

 

Solution
                

{ }
{ } 

1

max 1 2 1 , 0 3 1, 6 1 1 8,

max 1 0 6,  2 3 1 ,  1 1 1 7.

A

A
∞
= + + − + + + + =

= + + + + − − + − + =
 

 

 

Example 4.6    Given     
2 1
1 2

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

A ,   find  
2
.A  

Solution   

                           1 1

2 1

22 1
21 2

x
−− 2

2

⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥ − +−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x x
A

x x x
 

 

                 
2 2
1 2

2 2
1 2 1 22

1
max (2 ) ( 2 )
x x

A x x x
+ =

x⎡ ⎤∴ = − + − +⎣ ⎦  

                   
2 2
1 2

1
2 2 2
1 2 1 2

1
max 5( ) 8

x x
x x x x

+ =
⎡ ⎤= + −⎣ ⎦  

                   
2 2
1 2

1
2

1 2
1

max (5 8 )
x x

x x
+ =

= −  . 
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Let    F 1 25 8= − x x    then  max2
=A F    subject to   2 2

1 2 1+ =x x . 
 

From the constraint,  we have 
 

                        2
2 1 1x x= ± −      and so    2

1 15 8 1F x x= ± − . 
 

To find the maximum of  F, let 

                                  21
1 12

1 1

8 1
1

xF x x
x x

⎛ ⎞−∂ ⎜ ⎟= ± + − =
⎜ ⎟∂ −⎝ ⎠

0  

 Hence, 

                                 1 2
1 1,
2 2

x x= =  
 

                               max 2

1 15 8  9   9 3.
2 2

F A= + = ∴ = =  
 

Remark: The  norm of a matrix can also be determined without referring directly to 
the definition. To develop the technique for the evaluation of  norm, we 
firstly introduce the notions of eigenvalues, eigenvectors, and spectral radius 
of matrices in the following section. 

2l

2l

 
 
 

            Eigenvalues ( )λ i  and Spectral Radius ( )Aρ  
 

 

4.3 

Eigenvalue and Eigenvectors 
 

 

Definition:   Let  A be an  real matrix. If there exists such that n n× 0≠x
 

                               A ,                         (4.14) λ=x x
 

 then  λ   is called the eigenvalue of A and  x  is the associated eigenvector. 
 
From (4.14), we have    
                          ( .                       (4.15) )A Iλ− x = 0
 

For λ  to be an eigenvalue, (4.15) must have non-trivial solution  x , which requires 0≠
 

                ( ) det ( ) 0.P A Ix λ= − =                      (4.16) 
 

The left hand side of the above equation is called the characteristic polynomial of A, and the 
eigenvalues of A,  λ , are the roots of the characteristic equation  ( ) 0.P x =  Hence, to find the 
eigenvalues of A, we just need to solve the characteristic equation. 
 
As λ  is an eigenvalue of A, det ( ) 0,A Iλ− =  and hence (4.15) has a non-zero solution, , which 
is called an eigenvector of A corresponding to the eigenvalue 

x
λ . 
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Example 4.6   Given  ,   find  all eigenvalues and all eigenvectors of A. 
1 0 2
0 1 1
1 1 1

A
⎛ ⎞
⎜= ⎜
⎜ ⎟−⎝ ⎠

⎟− ⎟

 

Solution    
1o  Characteristic polynomial:  

1 0 2
( ) det( ) 0 1 1

1 1 1
P A I

λ
λ λ λ

λ

−
= − = − −

− −
 

3(1 ) 2(1 ) (1 )λ λ λ= − + − + −  
2(1 )( 2 4)λ λ λ= − − +  

 

2o   The eigenvalues of A are the solutions of ( ) 0P λ = .    Thus,   
                                  

1 2,31, 1 3 iλ λ= = ± . 
 

3o  An eigenvector  x of  A  associated with 1λ  is the solution of the system  
 

                           1( )A I 0λ− =x , 
i.e. 

1

2

3

0 0 2 0
0 0 1 0
1 1 0 0

x
x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.     

 

The solution of the above system is  3 20, 1x x x= = . 
 

The choice of 1 1x =  produces the eigenvector (1, 1, 0)T.   
 

Similarly, we have the following two eigenvectors corresponding respectively to 
1 3 iλ = +  and 1 3 iλ = − :  

 

                       2 3 3,  ,  1
3 3

T

i i
⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

,    2 3 3, ,  1
3 3

T

i i
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
Spectral Radius of Matrix 
 

Definition.  The spectral Radius ( )Aρ of a matrix A is defined by ( ) max iAρ λ=  where iλ  are 
the eigenvalues of  A. 

 

 

Note:    For complex eigenvalue 2,i 2λ α β λ α β= + = + .  For example, for the matrix in the  

above example  { } { }( ) max 1 , 1 3 , 1 3 max 1,2,2 2A i iρ = + − = = . 
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 Properties of Eigenvalues and Eigenvectors of Symmetric and  Non-Negative Definite Matrices 
 
Definition (Symmetric Matrix):  An   matrix  A is said to be symmetric if n n× TA A= . 

 

An   symmetric matrix has the following properties: n n×
 

• All eigenvalues are real numbers. 
• There are  n eigenvectors that form an orthonormal set { }1 2, ,..., nv v v  such that 

                                           
0

,
1i j

i j
i j

v v
≠⎧

< >= ⎨ =⎩
 

where   denotes inner product of the vectors   and  ,i j< v v > iv jv  .  
 
Definition (Non-Negative definite matrix) : An   symmetric matrix is non-negative definite n n×

if    for every n-dimensional column vector . 0T Ax x ≥ 0≠x
 

Theorem 4.6    A symmetric matrix is non-negative definite if and only if all the eigenvalues are  
non-negative. 

 

Proof        
 1o     Prove the necessary condition:  (  ) . 0T Ax x ≥ 0iλ→ ≥
 

  Let λ  be an eigenvalue associated with eigenvector  x. Then  
 

                                               Ax  =  x   λ
 and  hence 

                     2
2

T TA λ λ= =x x x x x , 

 Which implies that if A is non-negative definite    , then  .     ( T A ≥x x 0) 0λ ≥
                               

2o   Prove the sufficient condition:   ( ). 0iλ ≥ → 0T Ax x ≥
 

Given  and let  be any vector. Since A is symmetric, its set of 
eigenvectors can be made into an orthonormal set  that spans , i.e.,  

0iλ ≥ 0x ≠

iu n

                         
1

n

i iα=∑x u     for some   iα     

 

As    ,  we have iAu λ= iu

               T T
j j i i

j i
iA u uα αλ

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜⎟ ⎟⎜= ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠
∑ ∑x x  

                                   T
i i j j i

i j

u uαλ α
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∑
 

2 0.i i i i i
i i

αλα α λ= =∑ ∑ ≥                                                       � 
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Evaluation of 
2

A  Using Spectral Radius of    TA A
 

Theorem  4.7     If   A   is  a  real  matrix, then    n n× 2
A =  ( )TA Aρ . 

 
Proof   

            
( ) ( )

( ) ( )
2 2

2 2

2 2

2 21 1

1 1

max max

max max ,  .

T

T T T

A A A A

A A A

x x

x x

x x x

x x x

= =

= =

= =

= = Ax
                                                        (4.17)                  

  

As TA A  is symmetric ( [ ]T T TA A A= A ) and non-negative definite (since 
2
2 0T TA A A= ≥x x x ),  all the eigenvalues of TA A  are non-negative.  

 

Let    be the eigenvalues of 1 2 ... 0λ λ> > ≥ TA A  and  
           be the orthonormal set of eigenvectors spanning .  1 2{ ,  , ...,  }nx x x n

 

Then there exist constants {Ci} such that, for any non-zero vector  x ,  we have  

                             
1

n

i i
i

Cx x
=

=∑
  

1 1

1 1

,
1 1

2 2
1

1 1 1 1

      ,   ,   

                          ,   ( )

                          ,   

n n
T T

i i j j
i j

n n
T

i i j j
i j

n n

i i j j j
i j

n n n n

i j j i j i i i
i j i i

A A C A A C

C C A A

C C

C C C C

λ

λ λ λ

= =

= =

= =

= = = =

∴ =

=

=

= =

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

x x x x

x x

x x

x x ≤

)

 

 

                    where    is the largest eigenvalue of 1 ( TA Aλ ρ= TA A .  
 

Further,                2 2
2

1 1 1
1  ,    

n n n

i i j j i
i j i

C C
= = =

= = = C∑ ∑ ∑x x x  

 

Thus                    1,  TA Ax x λ≤   for any x   satisfying  
2

1=x . 
 

and hence                              1max ,  TA Ax x λ≤ . 
 

The above together with (4.17) implies 
 

                                              2
12

( )TA A Aλ ρ≤ ≤ . 
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Hence                                       
2

( )T  A A Aρ≤                    (4.18) 
 

Also let  with v
2

1v =  be the eigenvector corresponding to .  1λ
 

Then                              
2

2 2

2 21
 maxA A

x
x v

=
= ≥ 2

2
A  

 

                                                
( ) ( ) ( )
( )

2
1 1 2

T T T T

T

A A A A

A A

v v v v v v vλ λ

ρ

= = = =

=
 

 

 Therefore,                     ( )2
TA A Aρ≥ .                   (4.19) 

 From  equations (4.18) and (4.19),  we have   
2

A = ( )TA Aρ . 
 

Example 4.7  Given  ,     find   
2 1 0
1 1 1
0 1 2

A
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

2
A and ( )Aρ . 

Solution    
A  is a real 3  matrix. 3×

                    .  
2 1 0 2 1 0 5 3 1
1 1 1 1 1 1 3 3 3
0 1 2 0 1 2 1 3 5

TA A
⎛ ⎞⎛ ⎞ ⎛⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜= =⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
 

The characteristic equation is 

    
5 3 1

det ( ) 3 3 3 0
1 3 5

TA A I
λ

λ λ
λ

−
− = − =

−
. 

 

Solving the above equations yields eigenvalues   λ =  0, 4,  9.    
 

Hence 
( ) max max(0,  4,  9)T

ii i
A Aρ λ= = 9=  

 

  
2

A = ( )TA Aρ = 9 3= . 
 

 

Relation of Matrix Norm A  and Spectral Radius ( )Aρ  
 

Theorem 4.8    If A  is a real matrix, then n n× ( )A Aρ ≤  for any natural norm.  
 
Proof 

Suppose   (with | | max )ii
λ λ λ=    is the eigenvalue of A with largest magnitude,  

and x is the associated eigenvector  with 1=x .  
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Since                                        Ax  = λ x,  
 

we have from the properties of vector norms and (4.11) 
 

 

                               A A Ax x x xλ λ λ= = = ≤ =  
 

Therefore,                     ( ) max iA Aρ λ λ= = ≤ .                                        

 
Theorem 4.9    For any matrix A and any a natural norm  0,  ε> ∃ ε⋅  with the property that    

                                                        ( )Aρ < A
ε

< ( )Aρ + . ε

                         Thus ( )Aρ is the greatest lower bound of the norm of A. 

 
Corollary       For a square matrix A,      ( )Aρ <1   ⇔     A

ε
<1        for some natural norm. 

 

 
Proof of Corollary 
 

(1o) Prove                   ( )Aρ <1  if    A
ε

<1. 
 

  By theorem  4.9,   ( )Aρ < A
ε

.    
                   

  Hence,   if  A
ε

<1   then   ( )Aρ <1. 
 

 

(2o)  Prove   if  ( )Aρ <1   then A
ε

<1. 
 

       ( )Aρ <1      ⇒     0 <  ( )1 Aρ− = ε . 
 

By the theorem above, for any   as above, there exists a  norm  ε .
ε

 such that  

                            A
ε ( )Aρ≤ + ε < ( )Aρ + ( )[1 ]Aρ− =1. 

 
Convergence of Matrices 
 

Definition:   We say an  matrix  A  convergent  if   for each i, j = 1, 2, …., n n n× ( )lim 0k
i jk

A
→∞

=
 

 

Example 4.8   Show that the matrix  
1 02
1 1

4 2
A

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

   is convergent  

Solution  
 

  2 1 2 0 1 2 0 1 4 0
1 4 1 2 1 4 1 2 1 4 1 4

A ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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3

3 2
3

3 1

111 1 000 0 284 2
1 1 1 1 3 1 3 1
4 4 4 2 16 8 22

A A A

+

⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦

 

 

4

4 3
4

4 1

11 00 216
1 1 4 1
8 16 22

A A A

+

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 

and in general  

kA = 

1

1 0
2

1
22

k

k

k

k
+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

. 

 

Since 1
1lim 0, lim 0
2 2

k

kk k

k
+→∞ →∞

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎟⎜⎝ ⎠
= ,   A is  a convergent matrix. 

 

Remark.    ( ) 1/ 2Aρ = ,   since ½ is the only eigenvalue. There is a connection between 
the spectral radius of a matrix and the convergence of the matrix, which is 
detailed below. 

 
 

Equivalent Conditions of Convergence of Matrices 
 

Theorem 4.10    The following statements are equivalent 
    

   (a)  A   is a convergent matrix 
   (b) lim 0m

m
A

→∞
=  for some natural norm  

  (c) lim 0m

m
A

→∞
=  for all natural norms 

  (d) ( )Aρ <1 

  (e)  for every  x. lim 0m

m
A x

→∞
=

 
Proof 
 

Preliminary: 
•  Every matrix norm A  is a continuous function of the elements of   A. 2n i ja

•   For each pair of matrix norms,  say A  and A ′ , ∃  positive constants m, M such 
that for all  matrix A,    

                          m A ′ ≤ A ≤ M A ′ . 
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(1o)    (a) (b),   (a) ⇒ (c). ≡

  Since .  is continuous and lim 0 0k

k
A

→∞
= = , (a) ⇒  

( )
( ).
c
b

⎧⎪⎪⎨⎪⎪⎩
  If (b) holds for some norms, then ∃  M   such that 
 

                                                0.m mA M A
∞
≤ →  

 
1

As max ( ) ,  0
n

m m m
iji j

A a A
∞ ∞

=

= →∑  implies ( ) 0m

i j
a → . Hence (a) holds. 

 
(2o)  Prove (b) ≡ (d). 
 

Let   be an eigenvalue of  A  and  x be an associated eigenvector, then              
  

λ

 

                                                  2

m m

A
AA A

A

λ
λ λ

λ

=
= =

=

x x
x x

x x

x  

 

Thus,  is an eigenvalue of  mλ mA  and we denote    ( )( ) ( ) mmA Aλ λ=   
 

Hence,                                 mA ≥ ( )( ) ( ) mmA Aρ ρ=  
 

If  (b)  holds, i.e.  lim 0,m

m
A

→∞
=  then from the above,   which 

implies     and so (b)  (d). 

lim[ ( )] 0m

m
Aρ

→∞
→

( ) 1Aρ < ⇒
 
If  (d)  holds,  i.e.  ( )Aρ < 1, then > 0 and a norm ∃ ε .  such that 
 

                                             A ≤ ( )Aρ + = . ε 1θ<
 

Thus    mA ≤ m mA θ< ,    so    lim 0m

m
A

→∞
=  and hence (b) holds. 

 
3o    (a)≡ (e) 

 

First prove   (a)⇒ (e):   A  is convergent .    0kA x⇒ →

If (a) holds,  i.e. A  is convergent,  then lim 0m

m
A

→∞
=   and so 

 

                         0k kA A≤ ⋅ →x x     for each  x  as    k ,      →∞
     

                                            0.kA∴ →x
 

Then prove  (e) (a):      ⇒  A is convergent. ⇒ 0kA →x
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Suppose  . 0kA →x
 
W choose  = eigenvector of  A   corresponding to the eigenvalue , then x λ
 

                                                     kA x = . kλ x
Since   , we have    0kA →x
 

                                                  kA
∞

x 0→ ,                             
                          

that is                               kA
∞

x = kλ
∞

x = kλ
∞

x 0→ . 
 

For the above to be true for any eigenvector,  we require  1λ <  for any 
eigenvactor 
                                                      ∴ ( )Aρ < 1  
 

and thus  A is convergent.    Therefore  (a)  holds.                                     
 
 
 

          Error Analysis  
 
 

4.4 
 

Stability and a Priori Error Bound 
 

For a linear system Ax = b, if small changes are made in A or b, do large change in the solution of 
occur?  If yes, the solution of the system is said to be unstable or ill-conditioned. 0x

 
If the system is unstable, there may be no point in even attempting to obtain an approximate 
solution. This is because  if the data of the system are measured quantities or otherwise known to 
only a limited precision, even an exact solution to the system is quite likely to be meaningless. 

 

Thus, how to test the stability of a system is an important issue. 
 
Suppose first that the data A and b in  
 

                               Ax = b                                                                    (4.20) 
 

are perturbed by the quantities Aδ  and . Then if the perturbation in the solution x is , we 
have  

bδ xδ

                                                      (A+ Aδ )( x + ) = b + .                                    (4.21) xδ bδ
 

Assume that A+ A is nonsingular, then we can have from (4.20) and (4.21) that δ
 

                                                             1( ) ( ).A A b Aδ δ  δ δ−= + −x x
 

Hence,                                      ( )1 ( )  A A b Aδ δ δ δ−≤ + +x x
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Therefore,                                  1( )A A A A
δ δ

δ δ−
⎛ ⎞⎟⎜ ⎟⎜≤ + + ⎟⎜ ⎟⎜ ⎟⎝ ⎠

x b
x b

                                     (4.22) 

 
where in the above we have used 
 

                                                                       .b A A= ≤x x  
 

It is now necessary to obtain an estimate for 1( )A Aδ −+  .  Firstly introduce the following 

Lemmas. 
 
 

Neumann Lemma     Let    ( )Bρ < 1.  Then   exists and 1( )−−I B

                                                                  (4.23) 1

0

( ) lim .  −

→∞
=

− = ∑
k

i

k
i

I B B

        
Proof    
 

For any eigenvalueλ  of B,  1 –λ   is an eigenvalue of   I – B .  
 

Since λ ≤ ( )Bρ < 1,  it follows that no eigenvalue of I – B can be zero and consequently    
I – B is nonsingular. 
 

Let                         2 ........   = + + + + m
mS I B B B

then                    . 1( ) +− = − m
mI B S I B

 

Since    B   is convergent  (as < 1), we have ( )Bρ
 

                     lim ( )
→∞

− =mm
I B S I

 

              .                                1

0

lim ( )i
mm

i

S B I B
∞

−

→∞
=

∴ = = −∑
 

Perturbation Lemma, Banch Lemma 
 

         If A is nonsingular and 
1

1
δ

−
≤A

A
, then A Aδ+  is nonsingular and     

                                          
1

1
1

( )
1

A
A A .

A A
δ

δ

−
−

−
+ ≤

−
                          (4.24) 
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Proof    
 

Set              1 , B A Aδ−=−
 

then           1 1B A Aδ−≤ <  
 

Thus,          ( ) 1Bρ <

Therefore,   from the Neumann Lemma   ( )  1

0

i

i

I B B
∞

−

=

− =∑

Hence,       ( ) 1
1

0

1 1 , 
1 1

i

i

I B B
B A Aδ

∞
−

−
=

− ≤ = ≤
− −

∑  

                  where we have used the formula  
0

1 .
1

i

i

x
x

∞

=

=
− ∑  

But           1( ) ( ),A A A I A A A I Bδ δ−+ = + = −       
 
and  so  A Aδ+ ,   as the product of nonsingular matrices, is nonsingular and  

                  ( ) ( )
1

1 1 1
1

.
1

A
A A I B A

A A
δ

δ

−
− − −

−
+ = − ≤

−
 

 

Now from  (4.22) and the perturbation Lemma, we can have the following theorem. 
 

 

Theorem 4.11  (Priori Error Estimate Theorem) 

             Suppose  A  is nonsingular and  
1

1A
A

δ
−

≤ ,  then the solution  ( )  to x xδ+

                                      ( ) (( )A A x x b bδ δ δ+ + = + )
   approximates the solution   x   of   Ax = b   with  error bound  

             
                                      

( )
1 ( ) /

b AK A
K A A A b A

δ δ

δ

⎛ ⎞⎟⎜ ⎟⎜≤ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠

x
x

δ
+                                 (4.25) 

 

                       where ( ) 1−=K A A A is known as the condition number of A. 

 
Condition Number  K(A)    

 

  We define 

                                                            

1 if   is nonsingular
( )

if   is singular

A A A
K A

A

−⎧⎪⎪⎪=⎨⎪⎪ +∞⎪⎩
 

 
 as condition number of   A  relative to a natural norm.   
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It can be noted that  

                                            1 ( , )≤ <K A ∞
 

as for any nonsingular matrix A and natural norm 
 

                              
( )1 11 .− −= = ⋅ ≤ =I A A A A K A  

 

In error estimate (4.25), 1( ) / 1K A A A A Aδ δ α−= = <   by assumption.  Thus, we may 

expand  ( ) 11 α −−    by its geometric series  

               21 1 .
1

α α
α

= + + +
−

.. , 
 

and conclude that, to a first order approximation, the relative error in  x  is  K(A)   times the 
relative errors in A and b. 

 
For small value of K(A) (say one), small changes in A and b only cause small changes in x, thus 
the system (matrix) is said stable (well-conditioned) while for large value of K(A), small changes 
in  A and b will cause relatively large changes in x and thus the system (matrix) is unstable (ill- 
conditioned). 
 
 

Approximate Condition Number 
 
An approximation for the condition number,  involved with solving the system   Ax =b  using 
Gaussian elimination and the t-digit type of arithmetic, can be derived as  

                 
( ) 10 ty

K A
x

≈  

where  Ay = r and  r  is the residual vector (b – Ax). 
 

Example 4.10   Consider the stability of a system  Ax = b  with      
1 2

.
1.0001 2

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

Solution              3.0001,A
∞

=  

1 2 2 10000 100001 , 
1 2 1.0001 1 5000.5 5000

1.0001 2

A− ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 
 

1 20,000,A−

∞
=  

 
( ) 3.0001*20,000 60,002.K A∞∴ = =  

 
which means that a small relative change in  A  or  b  will cause significant large relative 
changes in x, so the system is unstable, i.e. ill-conditioned. 
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Residual and a Posteriori Error Bound 
 

If  is an approximation to the solution of  Ax = b  and the residual vector  has the 
property that 

x r b Ax= −
r  is small, one may conclude that  would be satisfactory. However, this is not 

always the case. In fact, the smallness of 

x

r  does not guarantee that is close to the true solution 
x. It is the condition number  K(A) that again plays the  crucial role.    

x

 
For example, the system Ax = b  given by 
 

                                         ⎥
⎥   

1

2

1 1 3
1.0001 2 3.0001

x
x
⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢

⎤
=⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦

⎤
⎥
⎥⎦

 

has the unique solution x = (1, 1)T.  The poor approximation x =(3, 0)T has the residual vector  
 

                                    
3 1 1 3 0

3.0001 1.0001 2 0 0.0002
Ax

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

r=b

and   0.0002r
∞
= . 

 
 

Although the norm of the residual vector is small, the approximation is obviously poor. 
 

 
How to Estimate the Posterior Errors? 
 

Let                          r b A A A Ax x x δ= − = − = x
 
Then                       1A rxδ −= ,         1A rxδ −≤ . 
 

Moreover, since     we have ,b Ax=
 

                                b A x≤  
and thus 

                                                      ( )1 r r
A A K A

b b
x
x
δ −≤ = . 

 
Theorem 4.12  (Posterior error Estimate Theorem)  
 
        If   is an approximation to the solution of  Ax = b  and  A is a nonsingular matrix,     x
   then for any  natural norm, 

                                                                     
( )

1 ,

,

r A

r
K A

b

x

x
x

δ

δ

−≤

≤
                                                  (4.26)                       

       where  and  r is the residual vector for with respect to Ax = b.    x x xδ = − x
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Remark.  If K(A) is close to one, a small residual vector implies a correspondingly accurate 
approximate solution and the matrix A is said to be well behaved (well-conditioned), 
while if K(A) is large, small residual vector does not necessarily guarantee the accuracy 
of results. 

 
 

            The Residual Correction Method for Solving Linear Systems of Equations  
 
 

4.5

Assume that  Ax = b  has been solved for an approximate solution ( ) ( )0x̂ x= 0 .   To improve the 
accuracy, we first calculate the residual vector    
 

                                                                  ( ) ( )0 0r b Ax= − .    

Define  ( ) ( )0e x x= − 0 ,   we then have  

                                                                    ( ) ( )0 0A re =  

which yields an approximation  .  ( )0e
 

In general, ( ) ( ) ( )1 0 ˆx x e= + 0   is a more accurate solution to the system Ax = b  than ( )0x . This 

process can be repeated, calculating ( ) ( ) ( )2 3 4, , ,...x x x , to continually reduce the error. The method 
using this process is called iteration refinement or residual correction method. The method is 
generally used only for ill-conditioned systems, since this technique will not significantly improve 
the approximation for a well-conditioned system.  
 
 

Iteration Refinement Algorithm 
 

Input:    Number of equations, the entries of A and b,  Maximum number of  iterations 
N and tolerance Tol. 

Output:  The approximate solution ( 1 2, , .......,= T
n )xx xx xx xx  or  a message that the 

number of iterations was exceeded. 
 

Step 1:   Solve Ax = b  for x, saving  LU and noting row interchanges. 
 

Step 2:  do steps 3 – 7 for k =1, 2, …, N.     
Step 3:      for i =1, 2, …, n (calculate r) 

                  set  
1

n

i i ij
j

r b a x
=

= −∑ j

Step 4:       back substitution to solve Ae = r  using the stored LU decomposition  
Step 5:       for  i =1, 2, …, n,  set = +i i ixx x e  

Step 6:      if  x xx
∞

− <Tol   then output  xx  and  stop 

Step 7:        else  set  xi = xxi    for  i=1, 2, …, n,  and then go to step 3 
 

Step 8:   Print “Maximum Number of Iterations Exceeded”. 
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            Calculating Matrix Norms Using Maple/MATLAB  
 
 

4.6

 
Calculating Matrix Norms Using Maple 
 

The Maple function  “norm()”   calculates the  matrix norm 2

Example.   Given  , find 
1 0 2
0 1 1
1 1 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

2
A  

 
> norm(A,2); 

gives 

                      ( )
( )

1/ 3

1/ 3

1 2246 61 237
3 33 46 61 237

+ +
+

10
+ . 

 
Calculating Matrix Norms Using MATLAB 
 

The MATLAB built-in  function  “norm()”   calculates several types of matrix norms: 
 

norm(A,p)    returns  p  matrix norm. 

norm(A)      returns   matrix norm. 2

norm(A,inf)   returns   matrix norm. ∞
 

Example.   Given  .  Find 
1 0 2
0 1 1
1 1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

−
2

A  and  A
∞

. 

 
>> norm(A,2) 

 

produces 
 

ans = 
           2.4998 

and 
 >> norm(A,inf) 

 

produces 
 

ans = 
           3 
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EXERCISE 4 
 

Q4.1    Find 
1
,  x x

2
 and  x

∞
 for  where k is a fixed positive integer.  (sin , cos , 2 )x = k Tk k

Q4.2    Verify that 
1
2

2
2

1
x

=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑

n

i
i

x is a norm on . n

Q4.3   Verify that 1
1

x
=

= ∑
n

i
i

x is a norm on  n

 

Q4.4   Calculate the  and  distances between 2l ∞l (2,  1,  0)x =  and (0, 2,  1)y = −  
 
Q4.5   Prove that the following sequences are convergent and find their limits 

 (a)  ( ) 1
2

1 2,  ,  x − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

T
k ke

k k
 

 (b)  ( ) 21cos ,  sin ,  3x −⎛ ⎞= +⎜ ⎟
⎝ ⎠

T
k ke k k k

k
 

 

Q4.6  Prove that 
1

maxA A
x

x
=

=   is a matrix norm. 
 

Q4.7  Find 
1

⋅ and 
∞
⋅  for 

1 1
2 1

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A  and 
10 15
0 1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B  

 
 

Q4.8  Verify that  ≤AB A B  in Q4.7. 
 
Q4.9  Compute the eigenvalues and associated eigenvectors of the following matrices: 
 

               (a)  
2 1 0

2 1
          (b) 1 2 0

1 2
0 0 3

⎡ ⎤
−⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Q4.10  Find the spectral radius for each matrix in question 4.9. 

Q4.11  Find 
2
⋅  for each matrix in question 4.9 using both 

2
( T )A A Aρ=  and 

2
2 21

maxA A
x

x
=

=  

Q4.12  Which of the matrices in question 4.9 are convergent? 
 
Q4.13  Show that if A is symmetric, then 

2
A = ( )Aρ . 

Q4.14  Show that  is not convergent but 1

1 0
1/ 4 1/ 2

A ⎡ ⎤
= ⎢
⎣ ⎦

⎥ 2

1/ 2 0
16 1/ 2

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is convergent. 

Q4.15  Show that for any two vectors a and b and any vector norm, a b a b− ≤ −  

Q4.16 Calculate ( ) ( ) ( )1 2
1 2

,  and  for =
3 4∞

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

K A K A K A A  
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Q4.17 Compute the condition numbers of the following matrices relative to 
∞
⋅  

                      (a)            (b)      
1 2

1.0001 2
⎡ ⎤
⎢
⎢⎣ ⎦

⎥
⎥

⎤
⎥
⎥⎦

3.9 1.6
6.8 2.9
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Q4.18 Consider the system  

                                                     Ax =  1

2

1 2 3
1.0001 2 3.0001

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢=⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦

x
x

with exact solution , and the system             1 2 1x x= =

                         ( ) 1 1

2 2

1 2 3
( )

0.9999 2 3.0001
x x

A A x x
x x

δ
δ δ

δ

⎡ ⎤⎡ ⎤ ⎡+⎢ ⎥⎢ ⎥ ⎢+ + = =⎢ ⎥⎢ ⎥ ⎢+⎣ ⎦ ⎣

⎤
⎥
⎥⎦⎣ ⎦
. 

Compute /x xδ
∞ ∞

and estimate for this from the error estimate theorem 4.11.  Is   A  ill-
conditioned? 

Q4.19   Show that if  B  is singular, then 1
( )

−
≤

A B
K A A

 

   Hint:   1)  Show that 1/x x −≥A A  

               2)  There is x≠ 0, with 1,  such that 0  so  ( )B A Ax x x= = = B x− . 
 

Q4.20   Using Q4.19, estimate the condition numbers ( )K A∞  for Q4.17(a) and Q4.17(b). 
 
Q4.21  Solve the following using Gauss elimination and iterative refinement using 3 digit arithmetic  

                1 2

1 2

(a) 3.9 1.6 5.5
0.8 2.9 9.7

+ =

+ =

x x
x x

1 2

1 2

(b) 4.56 2.18 6.74
2.79 1.38 4.13

+ =

+ =

x x
x x

 
Q4.22 Write a computer subroutine to implement the iterative refinement scheme for Ax = b and solve the 

following system using the program developed. 
 

                                   
1

2

3

1 2 3 6
4 5.1 6 15.1

7.01 8 9.01 29.2

⎛ ⎞⎛ ⎞ ⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟=⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎟⎟⎜ ⎟⎜ ⎜⎜ ⎜⎜⎝ ⎠⎝ ⎠

x
x
x

⎛ ⎞

⎝ ⎠
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       Iterative Methods for Systems of Linear Equations 

CHAPTER 

5 

 
 

For large systems with a high percentage of zero entries, iterative techniques are usually more 
efficient in terms of both computer storage and computation time than direct methods. 
 
Solving an n × n linear system by iterative techniques includes the following general steps 
 

• Convert   Ax = b    to    Nx  =  Tx + c 
• Select an initial vector x(0) approximating x 
• Generate a sequence of vectors x(k) that converges to x by  

 
 

N x(k) = T x(k – 1) + c,        k =1, 2, … 
 

Jacobi and Gauss-Seidel iterative methods are two basic iterative techniques which convert  Ax = b  
to  Nx = Tx + c  using different ways. 
 
In this chapter, we first introduce the Jacobi method and Gauss-Seidel method respectively in 
sections 5.1 and 5.2. Then we present the general convergence condition for iterative methods and 
particularly the sufficient conditions for convergence of the Jacobi and Gauss-Seidel methods in 
section 5.3, followed by the topics of error estimate and speed of convergence in section 5.4. 
Finally in section 5.5, we introduce the successive over relaxation (SOR) and under relaxation 
methods by modifying the Gauss-Seidel method to include a scaling (relaxation) factor. 

 
 

            The Jacobi Method  
 
 

5.1 

 

In this method, the system 
                                                        Ax = b                                                   (5.1) 
 
is converted to   Nx = Tx + c   by splitting A into its diagonal and off-diagonal parts 
 

     

12 111 12 1 11
2121 22 2 22

( 1)

1 ( 1)1 2

0 0 0 0... 0 ... 0
0 0 0 0 0... 0 ... 0

0... 0 0 ... 0 0 0
−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ − −⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

" …
% #

# % % # # # %# # % # # # % #
" "

nn

n
n n

n n nn n nn nn

a aa a a a
aa a a a

A
a

a aa a a a
⎥
⎥
⎥

 (5.2) 

                                                                      
                     = D – L – U                                            
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Thus, equation (5.1) becomes    
                                                          (D – L – U)x = b                                                       
           which gives 
                                                         Dx – (L + U)x = b               

 and  so                                                          
                                                    1 1( )D L U D b− −= + +x x .                     (5.3) 
 
Hence, we can establish the following iterative formula 
 

                                                        ( ) ( )1k k
jT c−= +x x ,                      (5.4) 

                             where       1 1( )  and  .jT D L U c D b− −= + =
 

Alternatively, (5.4) can be expressed as  

                            ( )
1

( 1) ( 1)

1 1

1 i n
k k k

i ij j ij j
i i j j i

a a
a

−
− −

= = +
ib

⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑x x x ,   i=1, 2,…, n.                        (5.5)   

  
The criterion to stop generating new term is  
 

                                                        
( ) ( )

( )

1

.
k k

k
Tol

−−
<

x x

x
 

 
 

Jacobi Iterative Algorithm for Solving  Ax=b 
 

To solve Ax = b, given an initial approximation ( )0x . 
 

Input:    Number of equations N; matrix A, vector b, initial guess  x0,  
      tolerance Tol, maximum number of iterations Niter 
 

Output: The solution x or a message that the number of iterations was exceeded. 
 

Step 1:   k ← 1 
Step 2:  while (k  N≤ iter) do steps 3 – 5   
Step 3:     for i =1 to N do  

                  0
1,

1 n

i ij
ii j j i

a b
a

= ≠

⎡ ⎤
⎢ ⎥← − +⎢ ⎥
⎢ ⎥⎣ ⎦
∑x x j i  

Step 4:   if 0x x− <Tol  then  
                       Output x 
                       STOP 
Step 5:    else      
                           x0 ← x 
 k  ←  k+1 
                                  then go to step 3 
Step 6:  Output “Number of iterations was exceeded”. 
              STOP. 
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Example 5.1   Find the solution to the system 

                                                                   
9 1 1
1 8 0 7
1 0 9 8

x
7⎡ ⎤ ⎡− − ⎤

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎦ ⎣ ⎦

 

⎣
Solution  

                                    ( ) ( )1
0 1/ 9 1/ 9 7 /8

1/ 8 0 0 7 /8
1/ 9 0 0 8 / 9

k k−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= + ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

x x

⎦

. 

 

Select  x(0)  =  0.  The numerical results for k=1,2,3,4,5, obtained by using the Jacobi 
method, are given in Table 5.1. 

 
 Table 5.1 Numerical Solutions by Jacobi and Gauss-Seidel  Methods 

 

k 0 1 2 3 4 5 

xk 

by Jacobi

0 
0 
0 

0.7798 
0.8750 
0.8889 

0.9738 
0.9722 
0.9971 

0.9942 
0.9967 
0.9971 

0.9993 
0.9993 
0.9993 

0.9998 
0.9999 
0.9999 

xk 

by Gauss-Seidel

0 
0 
0 

0.7778 
0.9722 
0.9753 

0.9942 
0.9993 
0.9993 

0.9998 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

 

 
 
 

            The Gauss-Seidel Method  
 
 

5.2 

 

A possible improvement to Jacobi’s scheme is suggested by an analysis of equation (5.5). To 
compute ( )k

ix , the components of  are used in Jacobi’s method. Since, for 

have already been computed and are likely to be better approximation to the 

actual solution  of 

( )1k
ix −

1 21,  ,  , ...,  k k k
ii x x x −≥ 1

1 2, 1,   ...,   ix x x − than ( ) ( ) ( )1 1
1 2 1,  ,  ...,  k k k

ix x x− − −
−

1 , it is reasonable to compute ( )x k
i  

using these most recently calculated data. 
 

The Gauss-Seidel iteration scheme is based on this consideration and takes the following form  
 

                                 ( )
1

( ) ( 1)

1 1

1 i n
k k k

i ij j ij j
i i j j i

ix a x a x b
a

−
−

= = +

⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ .      (5.6) 

 

We can also derive this formula and its matrix form directly from the original equation (5.1). 
Using (5.2), equation (5.1) can be written as  

 

                                (D – L)x = Ux+ b.          (5.7) 
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Then the Gauss-Seidel iteration scheme is  

 

                                    ( )1( )    kkD L U b−− = +x x ,       (5.8) 
 

which gives                    ( )1kk kD L U −= + +x x x b .                    (5.9) 
 

or                               ( )11( )  ( )kk D L U D L b−−= − + −x x 1− .    (5.10) 
 

 
Formulae (5.9) is precisely formulae (5.6). 

 

 
Gauss-Seidel Algorithm for solving Ax = b 

 

Input:  Number of equations N; matrix A, vectors b and x0, tolerance Tol,  and                             
maximum number of iterations Niter. 

 

Step 1:   k ← 1 
Step 2:   while (k≤  Niter) do steps 3 to 5   
Step 3:   for i =1 to N do  

                            
1

0
1 1

1 i n

i i j j i j
i i j j i

a a
a

−

= = +

⎡ ⎤
⎢ ⎥← − − +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑x x x j ib  

Step 4:  if   0 Tol− <x x     then  
                             Output xi 
                             STOP 
Step 5:  else  
                             k  ←  k+1 
                             x0 ←  x 
                             go to step 3 
 

Step 6:  Output “Maximum number of iterations was exceeded”. 
              STOP 

 
Example 5.2   Find the solution to the following system: 
 

                                        
9 1 1 7
1 8 0 7
1 0 9 8

x
⎡ ⎤− −⎢ ⎥
⎢ ⎥− =⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Solution 
 

Select  and use the following iterative formula to calculate the value 
of x

1 2 3 0x x x= = =

i for each cycle  
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( )

( )

( )

1 2

2 1

1 1

1 7 ,
9
1 7 ,
8
1 8 .
9

← + +

← +

← +

x x

x x

x x

3x

 

 

The computed results are shown in Table 5.1. 
 
 

            Convergence Conditions  
 
 

5.3 

 

General Convergence Conditions  
 

An iterative technique to solve the n × n linear system Ax = b starts with an initial approximation 
( )0x  to the solution x, and then generates a sequence of vectors 

 
 

               x(k) = T x(k-1) + c,        k =1, 2, …. 
that converges to x. 
 

 

Questions:   1) Does x(k) converge to the solution x = Tx + c  for any case? 
                2) If not, what is the restriction to ( )0x , T  or c? 

 

Theorem 5.1  For any ( )0x ∈ \n , the sequence { } defined by  ( )
0

k

k

∞

=
x

 

                                              x(k) = Tx(k-1) + c  (k ≥1 and c ≠ 0)                 (5.11) 
 
                       converges to the unique solution of x = Tx + c  iff  ρ(T)<1. 

 

Proof  
 

(i) First prove that     ρ(T)<1    the sequence x⇒ (k) generated by (5.11) converges to the unique  
                                                      solution. 

 

From (5.11)                    
       x(k) = T x(k-1) + c 
 

                                             = T(T x(k-2) + c) + c    
   

                = T2 x(k-2)+ (T + I)c 
                         
                       = Tk x(0) + (Tk-1 + ……..+ T + I)c. 

 
As   ρ(T)< 1,  from Theorem 4.10  (Equivalent conditions of  convergence), we have   
 

                                        ( )0lim 0k

k
T

→∞
=x . 
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From the Neumann Lemma (in section 4.4), 
 

  , ( )
1

1

0

lim
−

−

→∞
=

=∑
k

j

k
j

T I -T

Hence 

                                      
( ) ( )

( )

1
0

0

1

lim lim lim ( )

            0

k
k k j

k k k
j

T T

I T

−

→∞ →∞ →∞
=

−

= +

= + −

∑x x

c

c

c

x

 

Thus,            is the unique solution to     x = Tx + c. ( ) 1lim k

k
I Tx x −

→∞
= = −

 
(ii)  Now prove that     converges to the unique solution x. ( ) ( )1       kT xρ < ⇐
 

If       for any ,    then from (5.11)    x = Tx + c. ( )k →x (0)x
 

So for each k 

                   ( ) ( ) ( )( ) ( )( )1 1( ) =...x x x c x c x x x x− −− = + − + = − = −k k k kT T T T 0  
 

Hence,          ( )( ) ( )( )0lim lim 0kk

k k
T x x x x

→∞ →∞
− = − = . 

 

As    is arbitrary,    (0)x ( )0−x x  is also arbitrary.    Thus from theorem 4.10,   ( ) 1ρ <T . 

 
Strictly Diagonally Dominant Matrices 
 
 

Definition:  The n × n matrix A is said to be strictly diagonally dominant when  

  
1

n

ii ij
j
j i

a a
=
≠

>∑   

  holds for each i=1, 2, ………, n. 
 

For example,      is strictly diagonally dominant,  but  
7 2 0
3 5 1
0 5 6

⎡ ⎤
⎢ ⎥
⎢= ⎢
⎢ ⎥−⎣ ⎦

A ⎥− ⎥

6 4 3
4 2 0
3 0 1

⎡ ⎤−
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

B  is not. 

 
Theorem 5.2  A strictly diagonally dominant n × n matrix A is nonsingular. 
 

 
Proof   

Assume that  D, L  and U  are as defined by (5.2),  then   A= D – L – U.   As A is strictly 
diagonally dominant,   and thus D is nonsingular.  So we can construct 0≠i iD
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                         , ( )-1
1B D L U= +

and 

                                            ( )
1

1
1

1 1

max 1
i n

i j i j

i i i i ij j i

a a
B D L U

a a

−
−

∞ ∞
= = +

⎛ ⎞⎟⎜ ⎟⎜ ⎟= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑ <  

 

Hence,                                   ( )1 1 1B Bλ ρ
∞

≤ < < . 
 
For any eigenvalue λ  of ,  1 – 1B λ   is an eigenvalue of   (1

1 [ ])I B I D L U−− = − + .   Since 

1<λ ,  it follows that no eigenvalue of   I –   can be zero and consequently  I –   is 
nonsingular.  

1B 1B

 

Therefore,   A is a product of two nonsingular matrices  D and ( I – ). 1B
 

                                                                A = D( I – ) = D – L – U. 1B
 

Hence,    det A = det D  det( I – )  1B ≠  0    and thus A is nonsingular.                                     
 
Sufficient Conditions for Convergence of the Jacobi & Gauss-Seidel Methods 
 

By analyzing the iteration matrices for the Jacobi method, Tj  given in equation (5.4), and the 
Gauss-Seidel method, Tg  given in equation (5.10), i.e.  

 

                                          , , ( )1
jT D L U−= + 1( )gT D L −= − U

 

we can derive the following sufficient condition for convergence of  the Jacobi and Gauss-Seidel 
methods. 

 
Theorem 5.3   If A is strictly diagonally dominant, then for any choice of , both the Jacobi (0)x

and Gauss-Seidel methods give sequences  that converge to the unique ( ){ }
0

k

k

∞

=
x

solution of   Ax = b. 
 

Proof 
 

(1)  For Jacobi method  –  Exercise 
 
(2)  For Gauss-Seidel method 

                                              
1

maxg x
T y

∞∞ =∞

=  

 

   where             ( ) 1
gT D L Uy x −= = − x

 

from which   1 1 .D L D Uy y x− −= +  
 

Assume        , ( )maxk ii
y y=
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1

1 1

k n
k j k j

k
k k k kj j k

a a
y

a a
y y

−

∞ ∞
= = +

= ≤ +∑ ∑ x
∞

 

 

                            k kr sy x
∞ ∞

= + , 
 

where     
1

1 1

, .
k n

kj kj
k k

kk kkj j k

a a
r s

a a

−

= = +

= =∑ ∑  

 
Thus,  we have form the above formulae 

,
1

k

k

s
r

y x
∞ ∞

=
−

 

and consequently 

                                            .
1

k
g

k

s
T

r∞
≤

−
 

 

As   1  for strictly diagonally dominant systems,  we have 1  and 
hence 

( ) 0k ks r− + > kkr s− >

                                         
( )

         1

     1.

g

g

T

Tρ
∞

<

⇒ <
 

 

This, from Theorem 5.11, guarantees that the sequence converges to the unique solution.  

 
 

            Error Bound and Speed of Convergence  
 
 

5.4 

We now have the following essential issues: 
 

(i) How to estimate the error? 
(ii) How many iterations are needed for a given accuracy requirement? 
(iii) When are iterative methods preferable to Gaussian elimination methods in solving Ax=b? 

 
An error bound can be derived from theorem 5.1 and is summarized by the following corollary. 
 

Corollary  If 1T <  for any natural matrix norm, then the sequences { }  in (5.11) ( )
0

k

k

∞

=
x

converges, for any , to a vector x , and the following Error bounds (0) nx ∈ \ n∈ \
hold 

 

                               
( )

( ) (0)

0( ) (1)

1

kk

k
k

T

T
T

− ≤ −

− ≤ −
−

x x x x

x x x x
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Remark 1.  Since the above formulae hold for any natural matrix norm, it follows from theorem 
4.9  that  

                              ( )( ) (0)k k Tρ− ≈ −x x x x . 
 

Thus,  the rate of convergence is essentially  . ( )Tρ
 

Proof   
(a) First prove that    ( ) (0)1      .kkT Tx x x x< ⇒ − ≤ −   

 
From the iterative formulae (5.11)  
 

             ( ) ( )1k kT −= +x x c , 
we  have          

       .                                                     (5.12) ( ) ( 1)k kT −− = − −x x x x c
 

 

As x  is the exact solution,  we have 
 

                                   x = Tx + c , 
 

and thus  (5.12) becomes  

                                                   

( )

( ) ( 1)

( 2)

2 ( 2)

(0)

( )

           ( )

            

           .

k k

k

k

k

T

T T

T

T

−

−

−

− = −
⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

x x x x

x x

x x

x x

 

 

Hence,     ( ) ( )( ) (0) (0)kkk T T⎡ ⎤− = − ≤ −⎢ ⎥⎣ ⎦x x x x x x . 
 

(b)  Now prove that      ( ) (1) (0)1     .
1

k
k T

T x x x
T

< ⇒ − ≤ −
−

x  

As  ( ) ( )1k kT −=x x +c ,  we have  
 

                           ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 22 ...n n n n n n nT T T+ − − −− = − = − = = −x x x x x x x x1 0 . 
 

Thus for , 1n k> ≥
 

         ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )(1 1 2 1( ) .........n n n n n kk − − − +− = − + − + + −x x x x x x x x )k                

              ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0 1 01 2 .....n n kT T T− −⎡ ⎤ ⎡ ⎤ ⎡= − + − + + − ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣
x x x x x x

⎦
  

                                                      ( ) ( ) ( )1 02 1... n k kI T T T T− − ⎡ ⎤= + + + + −⎢ ⎥⎣ ⎦
x x                                   (5.13)  
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                    from which and the Neumann lemma in section 4.4, we have 
 

                          ( ) ( ) ( ) ( )1 1 0 1 0( ) ( ) 1

0
lim lim ( )

n k
n k j k k

n n j
x x T T I T T

− −
−

→∞ →∞ =

⎛ ⎞⎟ ⎡ ⎤ ⎡⎜⎡ ⎤ ⎟⎜− = − = − −⎟
⎤

⎢ ⎥ ⎢⎜⎢ ⎥ ⎟⎣ ⎦ ⎟ ⎥⎣ ⎦ ⎣⎜⎝ ⎠
∑ x x x x

⎦

)

)

             (5.14) 

 

Hence  
                           ( )                                                 (5.15) ( ) (( ) (1) (0)k kI T T− − = −x x x x

or                         
                             ( )        (5.16) ( ) (( ) ( ) (1) (0)k k kT T− = − + −x x x x x x

Thus  

   

( ) ( )
( ) ( )

( ) ( ) (1) (0)

( ) (1) (0)

( ) (1) (0)

    

                   

                   

k k k

k k

k k

T T

T T

T T

− ≤ − + −

≤ − + −

≤ − + −

x x x x x x

x x x x

x x x x

                                   
(5.17)

  

 

Therefore,            
(1) (0)

( )     
1

k
k

T

T

−
− ≤

−

x x
x x .                                        

    
Remark 2.  If the initial error is to be reduced to its εmultiple, then 
 

                                                         ( ) (0)    k ε− ≤ −x x x x , 
 

 and thus we require from the corollary   
 

                                                ( )( )  kTρ ε≤  
 

from which the iteration number needed can be determined by   
 

                                         ln
ln

k ε
ρ

+
≥

+
   ( ). ln 0ρ<

 
Example 5.4   Solve a dense linear system by iteration with accuracy up to about six digits. 

 

Solution     
 

Assume that = 0, then we require  (0)x
 

                                                                 
( )

6       10
k

ε −∞

∞

−
≤ =

x x

x
 

 

If  A  has order   n, the number of operations (multiplications) per iteration is n2 . To obtain 
the required accuracy, the necessary number of iterations is  
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( )6

*
ln 10 6ln10

ln ln
k

ρ ρ

−+
= =

+ −
, 

and the number of operations is  
2

* 2 6ln10
ln
nk n

ρ
=

−
. 

If Gaussian elimination is used to solve Ax = b,  the number of operations is about 
3

3
n . 

Therefore, the iterative method will be more efficient than the Gaussian elimination method 
if  

        < * 2k n
3

3
n

,  that is    <  *k
3
n . 

Table 5.2 shows the   value corresponding to different  ρ  values.  Obviously, if  n  is 
large and  ρ is small, the iterative method is more efficient. 

*k
 

         Table 5.2 
ρ k* 

0.9 
0.8 
0.6 
0.4 
0.2 

131 
62 
27 
15 
9 

 
 
 

            Relaxation Method  
 
 

5.5 

 

Alternative Form of the Gauss-Seidel Iterative Formulae 
 

Firstly,  we examine the Gauss-Seidel iterative formulae 
 

                                         ( )
1

( ) ( 1)

1 1

1 i n
k k k

i ij j ij j
ii j j i

ix a x a x b
a

−
−

= = +

⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥
⎣ ⎦
∑ ∑                                     (5.18) 

 

and develop an alternative form of  the formulae. 
 

Denote                                           ( ) ( ) ( ) ( )( )1 2, , ..........,k k k k
i ni ir r r r= i

n

    
 

as the residual error corresponding to the approximate solution below at the end of the (i-1)th step 
of the kth iteration cycle 

                            . ( ) ( ) ( ) ( ) ( ) ( )( )1 1
1 2 1, , ........., , , ......

Tk k k k k k
i iix x x x x x− −

−=
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Then, the  mth component of ( )k
ir is  

 

                                .   (5.19) ( )
1

( ) ( 1) ( 1)

1 1

i n
k k k

mi m m j j m j j mi i
j j i

r b a x a x a x
−

− −

= = +

= − − −∑ ∑ k

k

 

For m=i, (5.19) becomes 

                 , ( )
1

( ) ( 1) ( 1)

1 1

i n
k k k

i i i i j j i j j i i i
j j i

r b a x a x a x
−

− −

= = +

= − − −∑ ∑
from which we have  

                                             
( ) 1

( 1) ( ) ( 1)

1 1

1 .
k i n

i ik k
i i i j j i

i i i i j j i

r
x b a x a

a a

−
− −

= = +

⎡ ⎤
⎢ ⎥+ = − −⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ k
j jx  

 

It is noted that the right hand side of the above formula gives ( )k
ix  of the Gauss-Seidel method as 

shown by (5.18).  Hence, we can determine ( )k
ix  by 

 

                                                                   ( ) ( )
( )

1
k

k k i i
i i

i i

r
x x

a
−= + ,                                                          (5.20) 

 

which is an alternative formula for calculating the ith component of x in  iteration k. 
 
Characteristics of Gauss-Seidel Method 
 

From (5.18) and (5.19), the component of residual vector for the ith equation   after the 

calculation of   

( )
( 1)
k

i ir +

( ) ( )1andk k
i ix x −   becomes 

                               

( ) ( ) ( 1)
( 1)

1 1

1
( ) ( 1) ( )

1 1

0

i n
k k k

i i j j i j ji i
j j i

i n
k k k

i i j j i j j i j i
j j i

r b a x a x

b a x a x a x

−
+

= = +

−
−

= = +

= − −

⎡ ⎤
⎢ ⎥= − − − =⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑
 

which indicates that the characteristics of Gauss-Seidel method is that   at each step of calculation, 
one component of the residual vector is reduced to zero. 

 
Relaxation Method 
 

In general, the basis of all relaxation methods is to calculate the residual vector  r = b – Ax, and to 
modify (or relax) one or more components of the approximate solution x  in order to reduce to zero 
one or more components of  r.  The Gauss-Seidel method is an example of relaxation methods. 
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Successive Over  Relaxation (SOR) Method and Under Relaxation Method  
 

Reducing one component of the residual vector to zero is not generally the most efficient way to 
reduce the norm of the vector r. The procedure (5.20) can be modified by 
 

                        
( )

( ) ( 1)
k

i ik k
i i

i i

r
x x

a
ω−= + .                                                       (5.21) 

For certain choice of positive ω, the speed of convergence of ( )k →x x  can be accelerated. For 
choice of ω <1, the procedure are called  under-relaxation methods, and can be used to obtain 
convergence of some systems that are not convergent by the Gauss-Seidel method. For choice ω 
greater than 1, the procedures are called  over-relaxation methods, which are used to accelerate 
convergence for systems that are convergent by the Gauss-Seidel technique. These methods are 
called  Successive Over-  Relaxation (SOR). 

 

 
The system of equations (5.21) can be written as  

    ( )
1

( ) ( 1) ( ) ( 1)

1 1

1
i n

k k k
i i i i j j i j

i i j j i

x x b a x a x
a
ω

ω
−

− −

= = +

k
j

⎡ ⎤
⎢ ⎥= − + − −⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑  

or in matrix form 

            
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 11

1

1

k k

k k

D L D U b,

D L D U D L b

ω ω ω ω

ω ω ω ω ω

−

− −−

⎡ ⎤− = − + +⎢ ⎥⎣ ⎦
⎡ ⎤= − − + + − .⎢ ⎥⎣ ⎦

x x

x x
 

 
Choose of ω 

 

In order to make x(k)  converge to x as rapidly as possible, the ω is to be chosen to minimize 
 where ( )Tωρ ( ) ( )1 1T D L D Uω ω ω− ω⎡ ⎤= − − +⎢ ⎥⎣ ⎦ . Although no complete answer to this 

question is known for our general n × n linear systems, the following results can be used in 
certain situations. 

 
Theorem 5.4   If , then 0i ia ≠ ( ) 1Tωρ ω≥ − . This implies that  only if . ( ) 1Tωρ < 0 2ω< <

 
Theorem 5.5   (Ostrowski-Reich). If A is a positive definite matrix and , then the SOR  0 ω< < 2

            converges for any choice of initial approximate solution vector . (0)x
 

Theorem 5.6  If  A  is positive definite and tri-diagonal, then  and the   ( ) ( )
2

1g jT Tρ ρ⎡ ⎤= ⎢ ⎥⎣ ⎦
<

   optimal choice of ω for the SOR is  

                       
( )

2

1 1 gT
ω

ρ
=

+ −
   and   ( ) 1.Tωρ ω= −  
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SOR Algorithm for Solving Ax = b 

 
Input:    Number of equations N,  A,  b, x0i, ω, Tol, Niter
Output:  The solution xi or a message that the number of iterations was exceeded. 
 
Step 1:   k ← 1 
Step 2:   while (k  N≤ iter) do steps 3 to 5 
Step 3:    for i =1 to N do  

    ( )
1

0 0
1 1

1
i n

i i i i j j i
i i j j i

j jx x b a x a x
a
ω

ω
−

= = +

⎡ ⎤
⎢ ⎥← − + − −⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑  

Step 4:   if 0 Tol− <x x  then  
                           Output x and the procedure completed successfully 
                          STOP 
Step 5:    else  
                            k  ←  k+1 
                                         x0i ←  xi
                 go to step 3 
Step 6:    Output “maximum number of iterations was exceeded”. 
               End 

 
 

EXERCISES 5 
 
 

Q5.1   Find the first two iterations of the Jacobi method for the following system, using = 0 (0)x

                                                    
1

2

3

10 1 0 8
1 10 2 7

0 2 10 6

x
x
x

⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦⎣ ⎦

 

Q5.2  Repeat Q5.1 using the Gauss-Seidel method. 
 

Q5.3  Repeat Q5.2 using the SOR method with ω = 1.2. 
 

Q5.4  Write a computer subroutine to implement the SOR iterative scheme for Ax = b. Then solve Q5.1 
using Tol = 10–2, maximum number of iteration Niter= 25, and ω = 0.5 and ω = 1.1, respectively. 

Q5.5  (a)  Prove that ( ) (0)kk T− ≤ −x x x x  and 
(1) (0)

( )

1

k
k

T

T

−
− ≤

−

x x
x x  where T is an   n × n 

matrix with 1T < and ( ) ( )1k kT −=x x +c  with  arbitrary ( ) and  x = Tx + c. (0)x n∈ \
 

          (b)  Apply the bounds to Q5.1.  
 

Q5.6  Show that if A is strictly diagonally dominant, then 1jT
∞

< . 

____________________________________________________________________________________ 
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       Solution of Nonlinear Systems of Equations  

CHAPTER 

6 

 
 
The general form of a system of nonlinear equations is 

                                                          

1 1 2

2 1 2

1 2

( , ,........., ) 0,
( , ,........., ) 0,

( , ,........., ) 0.

n

n

n n

f x x x
f x x x

f x x x

⎧ =⎪⎪⎪⎪ =⎪⎪⎨⎪⎪⎪⎪ =⎪⎪⎩
 

Let     be the vector valued function ( )f x

                              

1 1 2

2 1 2
1 2

1 2

( , ,........., )
( , ,........., )

( , ,........., )

( , ,........., )

n

n
n

n n

f x x x
f x x x

x x x

f x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f  

 

Then the system can be written in vector notation by 
 

                             . ( ) =f x 0
In this chapter, we present various methods for solving nonlinear systems. Section 6.1 briefly 
reviews the concepts of limit and continuity of functions of multi-variables and vector valued 
functions. Section 6.2 presents the fixed point iteration scheme and its convergence condition, 
followed by Newton’s method in section 6.3 and the modified Newton and quasi Newton methods 
in section 6.4. In section 6.5, the steepest descent algorithm is presented. Finally in section 6.6, we 
show how to solve systems of nonlinear equations using Maple and Matlab built-in functions. 
 

 

            Preliminary  
 
 

6.1 

In this section, we briefly review the concepts of limit and continuity for functions of multi-
variables and vector valued functions. 

 

Limit and Continuity of Functions of Multi-variables (from to )   n
 

Let   ( )1 2, , ........, 0 n
nf x x x D= ∈x R⊂

Definition – Limit:  f is said to have the limit l at x0, denoted by ( )
0

lim f l
→

=
x x

x , if for any given 

number , there exists a number δ  with the property that 0ε> 0>

( )f l ε− <x  whenever  and D∈x 00 δ< − <x x .  
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Definition – Continuity:  f is said to be continuous at  provided that0 D∈x

0
lim ( )f
→x x

x  exists and 

0
0

lim ( ) ( )f f
→

=
x x

x x ; and f  is said to be continuous on a set D   provided 

that  f is continuous at every points of  D,  expressed by ( )f C D∈ . 
 

Limit and Continuity of Vector-valued Functions (from  to ) n n

 
Let 

  

1 1 2

2 1 2
1 2

1 2

( , ,........., )
( , ,........., )

( , ,........., )

( , ,........., )

n

n
n

n n

f x x x
f x x x

x x x

f x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f    

 
Definition - Limit:   If and only if all functions  have limit, if

0
lim ( )i if L
→

=
x x

x , we said that  f has 

limit L, denoted by . ( )1 2
0

lim ( ) ... T
nL L L L

x x
f x

→
= =

 
Definition - Continuity:   f  is said to be continuous at  provided that  exists and 0 D∈x

0

lim ( )
→x x

f x

is equal to ; and  f  is continuous on the set D if  f  is continuous at 0( )f x
every point x in D, expressed by   ( ).C D∈f

 
 

            Fixed-Point Iterative Methods  
 
 

6.2 
 

Given a nonlinear system in general form , we can rewrite the system in the following 
form  (in a verity of ways)  

( ) =f x 0

                         .                     (6.1) ( )=x g x
 

Definition - Fixed Point:   A solution to system (6.1) is said to be a fixed point of the vector-
valued function  g :   into .   D ⊂ n n

 
In the following, we study the following two basic problems: 
 

• when will the function  g(x) have a fixed-point? 
• how to determine the fixed-point? 

 
Conditions for Existence of Solution  

 

Let 1 2{( ,  ,  .........,  )T
n i iD x x x a x= ib≤ ≤  for each i =1, 2, …, n}.  If the following conditions 

hold, 
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1o   from  to  ( ) ( )C D∈g x n n

2o    ( ) ,D D∈ ∀ ∈g x x
 

then   has a fixed-point in D. ( )g x
 

Fixed-point Iteration Formula 
 
 

To find the fixed point of (6.1), we set up a fixed point iteration scheme 
 

                                                                (6.2) ( ) ( 1)( ) (k k k−=x g x 1)≥

k

or by the Gauss-Seidel method     
 

                              . ( ) ( ) ( ) ( 1)( ) ( 1) ( 1)
1 2 1 1( , , ...., , , , ...., )k k k kk k

i i i ni ix g x x x x x x−− −
− +=

With the above iterative formulae, we can generate a sequence  { }
1

k
k

∞

=

( )x  from an initial 

approximation , and we hope that the sequence converges to the fixed point of  .  In the 
following, we give the conditions for convergence of the sequence, and then discuss the rate of 
convergence for converging fixed point iteration schemes. 

(0)x ( )g x

 
Convergence Conditions 

 

If  g  has a fixed-point in D and  

1 o   g  has continuous partial derivatives 
( )i

j

g
x

∂

∂

x
   (i, j =1, 2, …, n) 

2 o  there is 
( )

1, such that i

j

g KK
x n

∂
< ≤

∂

x
,   whenever    ( i, j =1, 2, …, n) D∈x

then, the sequence generated from an initial estimate  in D by the above iterative 

formula (6.2)  converges to the unique fixed point 

( ){ }
1

k

k

∞

=
x 0x

D∈p  with error bound 

                                                ( ) ( ) ( )1 0

1

n
n K

K∞ ∞
− ≤ −

−
x p x x . 

 

Rate of Convergence 
Definition If  converges to x and  ( ){ kx }

                                                         
( )

( )

1

lim
k

k k α
λ

+

→∞

−
=

−

x x

x x
,  

then we define 
 α  – order of convergence.      If  α = 1, we have linear convergence,   

           α = 2  we have quadratic convergence. 
 λ  – asymptotic error constant. 
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Theorem 6.1  Suppose   p  is a solution of  g(x) = x   for some function   1 2 3( , , , ..., )T

ng g g g=g

                        mapping   into .    If a number  exists with the following properties  n n 0δ>
 

                              1 o 
( )i

j

g
x

∂

∂

x
 is continuous on {Nδ δ= − <x x p }       j, i = 1, 2, …, n 

                              2 o 
( )2

i

j k

g
x x

∂

∂ ∂

x
 is continuous and 

( )2
i

j k

g
M

x x
∂

≤
∂ ∂

x
 for some constant M,  ∀ ∈x n

                              3 o  
( )

( ) i

j

g
G

x
∂

= =
∂

p
p 0 . 

 

( ) ( )                         Then, a number  exists, such that the sequence generated by δ̂ δ≤ 1k k−⎡ ⎤= ⎢ ⎥⎣ ⎦
xx g     

converges quadratically to  p for any choice of ( )0x , provided  ( )0 δ̂− <x p . 

Moreover  

                                                        ( ) ( )
2 21 for 1
2

k kn M k−

∞ ∞
− ≤ − ≥x p x p . 

 
 

            Newton’s Method  
 
 

6.3 

 

Newton’s method is an algorithmic procedure to perform the transformation of   f(x) = 0 to a fixed 
-point problem. The method is based on the Taylor theorem for functions with multi-variables.  

 
Derivation of Newton’s Formula  

 

To determine the n-vector satisfying the system  f(x) = 0, we expand the  ith component function 
 of the vector valued function  f  as a Taylor series, if

                    ( ) ( ) 2( ) ( )( ) ( ) [ ( )] , ( 1, ),k k T k k
i i if f f R i⎛ ⎞⎟⎜= + ∇ Δ + Δ =⎟⎜ ⎟⎜⎝ ⎠

x x x x x n                    (6.3) 

in the case that  has continuous 1if st and 2nd order partial derivatives, where . ( ) ( )k kΔ = −x x x
 

Thus                                ( )( ) ( )( ) ( ) ( )2( ) 'k k k θ= + Δ + Δf x                                (6.4) f x f x x x

where                                  ( )

1 1 1
1 2
2 2 2
1 2

1 2

' (

f f f
x x xn
f f f

kx x xn

f f fn n n
x x xn

J

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

)f x   

is called the Jacobian matrix for f  at  x. 
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Considering that if  x  is the solution,  f(x) = 0,  we can obtain from (6.4) by ignoring the higher 

order term ( )2θ Δx : 

                                           
( )( ) ( ) ( )( )

( ) ( ).

k k k

k k

J⎧⎪ Δ =−⎪⎪⎨⎪⎪ +Δ⎪⎩

x x f x

x = x x
 

Hence, we have the following Newton iterative formula 
 

                                                   (6.5) ( ) ( ) ( )( ) ( )( )
11 .k k k kJ

−+ −x = x x f x
 

In the following, we study the convergence property of Newton’s method. 
 
Order of Convergence 

 

Newton’s Formula (6.5) can be written as 
 

                                                           ( 1) ( )( )k k+ =x g x
with 

                           .  ( ) ( ) ( )1J−= −g x x x f x
 

Thus 
 

                 

( )
( ) ( )

( )
( )

( )

1

1
1 .

j j j

j j j

J
x x x

J
J

x x x

−

−
−

∂ ∂ ∂ ⎡ ⎤= − ⎢ ⎥⎣ ⎦∂ ∂ ∂

∂∂ ∂
= − −

∂ ∂ ∂

g x x x f x

xx fx f x

 

At the root  x =α   where   f(α) = 0,     
j

J
x
∂

=
∂

f  

              

( )
( ) ( )

( ) ( )
( ) ( ) ( )

( )

1

1 1 1
1

1 2

...

.

n

n

G
x x

J J J
I J J

x x x

α

α α α
α α α

− − −
−

⎡ ⎤∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂ ∂ ∂⎢ ⎥= − − ⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

g x g x

f

 

By noting that  

              

1 1
1( ) 0,

j j j j

JJ J J IJ J
x x x x

− −
−∂ ∂ ∂ ∂

= + = =
∂ ∂ ∂ ∂  

we have  

                          

( )
( )

( )
( )

1
1 1 .

j j

J J
J J

x x

−
− −∂ ∂

= −
∂ ∂

x x
x x  
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Thus, if  f(x) has the first and second derivatives and J(x) is nonsingular at the root, then  
 
                               G(α) = I – I – 0 = 0. 

 
Hence, according to theorem 6.1, the convergence of Newton’s method is quadratic. 

 
Remark:   difficulties in using Newton’s method are : 

 

1 o  may lack of convergence because of a poor initial guess; 
 

2 o  the expense of constructing correctly and then solving the Newton equations for the   
correction Δx (h).  

 
 

            Modified Newton Method and Quasi Newton Method  
 
 

6.4 

 

Weakness of Newton’s Method 
 

Each iteration of Newton’s method requires the construction of an Jacobian matrix  n n× { }ijJ  
with  

                 ( )( )ki
ij

j

f
J

x
∂

=
∂

x  

and the solution of an   linear system n n×
 

            ( ) ( ) ( )( ) ( )k k kJ Δ =−x x f x  .
 

In most cases, the exact evaluation of  ijJ  is inconvenient or even impossible, and we need to 

calculate  ijJ by a finite difference approximation such as 
 

          
( ) ( )

( ) ( ) (
( )

k k
i j iki

ij
j

f h ff
J

x h
+ −∂

= =
∂

x e x
x

)
,                     (6.6) 

 

where  h is small in absolute value and je  is the jth column of the n  identity matrix.  Thus, the 

construction of J requires ( n ) scalar functional evaluations for calculating , 

(i,j=1,n) and  (i=1,n).  The number of arithmetic operations required for solving the linear 

systems is in the order of  i.e. . Hence, the total amount of computational effort required 

for just one iteration of Newton’s method is  scalar functional evaluations plus O n  
arithmetic operations. This amount of computation is huge for large n, which limits the application 
of Newton’s method and is the weakness of Newton’s method. 

n×
2 n+

)

( )( )k
i jf h+x e

( )( k
if x

3n 3( )O n
2n n+ 3( )

 
In this section, we study two other types of methods, namely modified Newton method and quasi-
Newton method in an attempt to reduce the amount of computation in each iteration. 
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Modified Newton Method 
 

In the (k+1)th iteration, Newton’s method  finds the improved result by  
 

        ,       (6.7) ( 1) ( ) ( )k k+ = +Δx x x k

)

)

) ) )

)

)+

)

)

)kx

f

)

 

where the correction    is determined by  ( )kΔx
            

     .       (6.8) ( ) ( ) ( )( ) (k k kJ Δ =−x x f x
 

In general,   is a full matrix of order n and thus O(n( )( kJ x 3) operations are required to obtain 

.  On the other hand, if the iteration is convergent and  depends continuously on x, 

then  will differ little from .  It is then reasonably to use  in place of 

 for the correction  at the (m + k)th  step, namely using 

( )kΔx ( )'f x
( )( k mJ +x ( )( kJ x ( )( kJ x

( )( k mJ +x ( )kΔx
 
 

                         for   m = 1, 2, …                               (6.9) ( ) ( ) ( )( ) (k k m k mJ +Δ =−x x f x
 

until a slowdown in convergence signals that  be taken as a more recent Jacobian 
matrix.  This method is called modified Newton method and can reduce the computation amount 
greatly since once  are factored, we can solve for an additional systems with different right 

hand side at a cost of  operations. 

( )( k mJ +x

( )( kJ x
2( )O n

 
Quasi Newton Method 
 
 

At the (k+1)th iteration of Newton’s method, the correction is calculated by 
 

 .                                                       (6.10) ( ) 1 ( ) ( )( ) (k kJ−Δ =−x x f
 

Quasi Newton methods replace the Jacobian matrix (or its inverse) with an approximation matrix 
that is updated at each iteration.   Broyden’s method is a widely used Quasi-Newton method. In 
this method,  x(1) is calculated from x(0) using Newton’s method, and    x(k)   (k ≥ 2)  is calculated as 
follows. 

 
Being analogy to the secant method for a single nonlinear equation 
  

               , ( )1 0 1 0( )( ) ( )f f′ − = −x x x x x
 

the Broyden’s method uses  
 

                                                       ,                                                   (6.11) (1) (0) (1) (0)
1[ ] ( ) (A − = −x x f x f x

 

which represents n equations in terms of n2 unknowns aij, and thus requires (n –1)2 additional 
equations. 
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Obviously, equation (6.11) describes the change in  f  when  A1 is applied on the vector x(1) – x(0), 
but do not describes how A1 operates on the other n –1 vectors zi (i = 1, 2, …, n –1) orthogonal to        
x(1) – x(0).  Thus, we impose 

 
                  A1 zi= J[ x(0)] zi    whenever (x(1) – x(0))zi = 0,                                             (6.12) 
 

which  means any vector orthogonal to x(1) – x(0) is unaffected by the update from  J (0) to A1. 
Conditions (6.11) and (6.12) gives   equations in term of  unknowns and thus uniquely 
define A

2n 2n
1 (see Dennis and More, SIAM review, 19, No. 1, 46 – 89) as  

 

                ( )( )
( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

1 0 0 1 0 1 0

0
1 21 0

2

T
F F J

A J

⎡ ⎤− − − −⎢ ⎥⎣ ⎦= +
−

x x x x x x x
x

x x
.                  (6.13) 

 

This matrix is then used in place of J(x(1)) to determine x(2): 
            

                        ( ) ( ) ( )( )2 1 11
1A−= −x x f x . 

 

The method is then repeated to determine ( )3x , using  A2 in place of A1  and with x(2) and  x(1) in 
place of  x(1) and  x(0). In general, once  x(i) has been determined,  x(i+1) is computed by  
 

             1
1 2

2

Ti i i
i i

i
i

y A s
A A s

s
−

−
−

= +                            (6.14) 

 

             ( ) ( ) ( )( )1 1i i
iA+ −= −x x f x i ,                   (6.15) 

 

where the notation ( )( ) ( )( 1i i
iy −= −f x f x )  and ( ) ( )1i i

is −= −x x  is introduced into (6.14) to 

simplify the equation. 
 

If the method is performed as outlined in equation (6.14) and (6.15), the number of scalar function 
evaluations is reduced from n2 – n to n (those required for evaluating F(x(i))), but the method still 
requires O(n(3)) calculation to solve the associated nn×  linear system  

 

                 .     (6.16) (( ) ( )i
iAΔ =−x f x )i

Employing the method in this form would not ordinarily be justified because of the reduction to 
superlinear convergence from the quadratic convergence Newton’s method.   

 
A considerable improvement can be incorporated, however, by employing a matrix inversion 
formula of Sherman and Morrison.  This result states that if A is a nonsingular matrix and  x  and y 
are vectors, then   A + xyT  is nonsingular provided  yTA-1x ≠ –1.  Moreover, in this case,  
 

    
1 1

1 1
1( )

1

T
T

T
A AA A

A

− −
− −

−
+ = −

+

xyx
y x

y .                  (6.17) 
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This formula permits 1
iA−  to be computed directly from 1

1iA−
− , eliminating the need for a matrix 

inversion with each iteration. By letting ( ) 2
1 1 2,  /i i i i iA A y A s− −= = −x s ,  and y = si, formula 

(6.14) together with (6.17) implies that  
1

1 1
1 2

2

Ti i i
i i i

i

A s
A A s

s

−

− −
−

⎛ ⎞⎟⎜ − ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

y  

1 11
1 12

21
1

1 1
1 2

2

1

ti i i
i i

i
i

t i i i
i i

i

A s
iA s A

s
A

A ss A
s

− −−
− −

−
−

− −
−

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
= −

⎛ ⎞⎟⎜ − ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

y

y
 

( )1 1
1 11

1 2 21
12 2

;
t

i i i i i
i t

i i i i i

A s s A
A

s s A s

− −
− −−

− −
−

−
= −

+ −

y

y
 

so  

                       
( )1 1

11 1
1 1

1

t
i i i i i

i i t
i i i

1s A s A
A A

s A

− −
−− −

− −
−

−
= −

y

y
−

.     (6.18) 

 
This computation involves only matrix multiplication at each step and therefore requires only 
O(n(2)) arithmetic calculations. The calculation of Ai is bypassed, as the necessity of solving the 
linear system (6.16).   

 
 

            The Steepest Descent Method 
 
 

6.5 

 

This method can be used for finding an initial approximation for Newton-based techniques.  For 
the solution of a nonlinear system  

 

                         

( )
( )

( )

1 1 2

2 1 2

1 2

,  ,  .........., 0,
,  ,  .........., 0,

,  ,  .........., 0,

n

n

n n

f x x x
f x x x

f x x x

=
=

=
 

we construct a function from to  n

                                       ( ) 2
1 2

1

,  ,  .........., 
n

n i
i

g x x x f
=

=∑ . 

Obviously, the solution of the system is the n-vector with the property that  
 

                                       . ( )1 2,  ,  .........., 0ng x x x =
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The Steepest Descant method is to change x continuously in such a way that the function value of 
g is gradually reduced toward zero. 

 
Basic Steps 
 

 1 o   Evaluate g[x(0)] ; 
 2 o   Determine a direction from x(0) that results in a decrease in g ; 
 3 o   Decide the amount that should be moved in this direction and calculate x(1); 
 4 o   Repeat 2 o and 3 o.   

 
Determine Steepest Descent  Direction 
 

Gradient:  ( )
1 2

,  ,  ..........,  
T

n

g g gg
x x x

⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟∇ =⎜ ⎟⎜ ⎟⎜∂ ∂ ∂⎝ ⎠
x  

 

Directional derivative:                     .v vD g g l=∇
 
Steepest Descent direction:           ( )g−∇ x  
 

                                        ( ) ( ) ( )1 0 0   choose gα ⎡ ⎤∴ = − ∇ ⎢ ⎥⎣ ⎦
x x x . 

Determine α 
 

Principle: α should be chosen so that  
 

                                                              ( ) ( )0 0 : (g x g x qα α⎡ ⎤ )⎡ ⎤− ∇ =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
 

 

             is minimized and is significantly less than  g(x(0)) . 
 
Theoretical Method:  Differentiate q(α) with respect to α and then solve a root finding problem 

to determine α .  This method is too costly.   
   

Practical Method:    To determine the value of α which minimizes q(α), we firstly approximate 
q(α) by an interpolation polynomial P(α) at the neighborhood of ( )0x  that are 
hopefully close to the minimum value. Then we determine α c by minimizing 
P(α). For example, to approximate q(α)  by a quadratic interpolating 
polynomial  ,  firstly we find a  value such that 

 then use the following three points {  for 
constructing the interpolating polynomial:  

( ) 2P a b cα α= + + α

ig

γ

( ) (0)q qγ < }3
1( , )i i igα =

 

                                   
1 1 1

2 2 2

3 2 3

0,     ( )
    / 2,     ( )

,  ( )

g q
g q
g q

α α
α γ α
α γ α

= =

= =

= =
 

   By setting , we can determine a, b and c and hence obtain ( )iP α =
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                               , ( ) 2

1P g b cα α= + + α
 

where     . 2
1 2 3 1 2 3( 3 4 ) /  ,     (2 4 2 ) /b g g g c g g gγ γ= − + − = − +

 
Thus, the critical α c, which minimize P(α) ( q(α) ) can be obtained by  

          

      
( )

2 0      
2c

P bb c
c

α
α α

α
∂

= + = ⇒ =−
∂

.  

 
 
 

            Solution of Nonlinear Systems using Maple/MATLAB  
 
 

6.6 

 
Solution of Nonlinear System of Equations using Maple  

 
The Maple fsolve function can be used to solve nonlinear systems of equations. The syntax is  

 
        fsolve({eq1,eq2,…,eqn},{x1,x2,…,xn} [,options]) 
 

Example  6.1 .  Solve  the following system for roots in { }( , ) : 0 2,0 2D x y x y= ≤ ≤ ≤ ≤  

                                                   
2

2
1
2

x y
x y

− =
+ =

The Maple commands  
 

> eq1:=x^2-y=1 
> eq2:=x+y^2=2 
> fsolve({eq1,eq2},{x,y},{x=0..2, y=0..2}) 
 

                       
               give

     
x = 1.345089393, y = 0.8092654740{ }

 
Example 6.2 .  Solve the following system using initial guess (x1,x2,x3)=(0,0,0) 

                                             

2
1 2

2
1 2

1 2 3

37 0
5 0

3 0

x x
x x
x x x

+ − =
− − =
+ + − =

The Maple commands  
 

> eq1:=x1^2+x2-37=0 
> eq2:=x1-x2^2-5=0 
> eq3:=x1+x2+x3-3=0 
> fsolve({eq1,eq2,eq3},{x1=0,x2=0,x3=0}) 
 

                                      give     {x1=6, x2=1, x3=-4}    
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Solution of Nonlinear Systems of Equations using MATLAB 
 

The Matlab  fsolve ( ) function can be used to find roots (zeros) of a system of nonlinear equations  
f(x)=0 where x is an n-component vector and  is a vector valued 
function. The syntax is  

( 1 2( ) ( ), ( ),..., ( )nf f f=f x x x x )

 
[x, fval [,option]] = fsolve(@fun, x0 [,options]) 

              
where    fun      : the vector valued function f(x) of the nonlinear system of equations to solve.   

x0          :  initial guess of the solution vector. 
x             :  solution vector of  the nonlinear system 
fval       :  the value of the vector valued function f(x) at the solution x 
 

              [,options]   are optional arguments . 
 
                
Example.  Solve  the following system for roots in { }( , ) : 0 2,0 2D x y x y= ≤ ≤ ≤ ≤  
 

                                                .   
2

2
1
2

x y
x y

− =
+ =

Solution. 
 
First, we rewrite the system as 

      
2

1
2

2

( ) 1 0
( ) 2 0

f x x y
f x x y

= − − =
= + − =

 

or       and choose an initial guess x0 = [1 0]. 2 2( 1, 2)Tx y x y= − − + − =f 0
 

Then write a Maple program to define the vector valued function f(x)  via a Maple 
function fun(x), set up the initial guess of the solution vector, call optimset() to set 
option for displaying results in each iteration cycle,  and then call  fsolve() to solve 
the nonlinear system f(x)=0 to get the solution vector x and the corresponding value of  
f(x) via x and fval. The program is as follows 
 

function  F = fun(x) 

F =[ x(1).^2-x(2)-1; x(1)+x(2).^2-2]; 
 

>> x0 = [1, 0]; 

>> option = optimset(‘Display’, ‘iter’); 

>> [x, fval] = fsolve(@fun, x0, option) 
which gives 
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                                                                 Norm of      First-order       Trust-region 
 Iteration  Func-count         f(x)               step              optimality        radius 
     0          3                                 1                                            1               1 
     1          6                   0.332274                       1               1.85               1 
     2          9               0.00109938          0.186226           0.0913             2.5 
     3         12           1.17936e-008        0.0115633       0.000311             2.5 
     4         15           1.88824e-018   3.73868e-005      3.72e-009             2.5 
Optimization terminated: first-order optimality is less than options.TolFun. 
 

x = 
 

    1.3451    0.8093 
 

fval = 
 

   1.0e-008 * 
 

    0.1374 
    0.0024 

 
 

Note: In the above program, x is a one-dimensional array with x[1] representing 
variable x, and x[2] representing y. 

 
 
 

 
EXERCISE 6 

Q6.1  For the nonlinear system  
2 2
1 1 2
2

1 2 1 2

10 8 0

10 8 0

x x x

x x x x

− + + =

+ − + =
 

a) transform the system into a fixed-point problem and hence find a fixed point G 
b) show that G has a unique fixed point 
 

( ){ }1 2 1 2, 0 , 1.TD x x x x= ≤ 5≤  
 

c) perform two fixed-point iterations of the Gauss-Seidel method to approximate the solution of 

the system using ( ) ( )0 0, 0 T=x . 
 

Q6.2   For system  

⎪
⎩

⎪
⎨

⎧

=−
=−−
=++

0
01

0

4
2

2
31

2
2
1

321

xxx
xx

xxx
       

 using ( ) ( )0 4, 2, 2 T= − −x ,  
a) apply two iterations of Newton’s method 
b) apply two iterations of Broyden’s method .   
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Q6.3   Using the method of Steepest Descent with Tol = 0.005 to approximate the solution of the system  
 

013

03
3
1

2
21

2
2

2
1

=−−

=−

xxx

xx
 

 using ( ) ( )0 1, 1 T=x . 
 

Q6.4   Write a computer subroutine for solving the nonlinear system in Q6.3 using the   Steepest Descent 
algorithm. 

 

Q6.5   Write a computer subroutine for solving the nonlinear system in Q6.2 using the Newton’s method. 
 
 
_____________________________________________________________________________________ 
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       Interpolation and Polynomial Approximation  

CHAPTER 

7 

 
 
Concept of Interpolation 

For a given set of data points  , we can select a function p(x) in such a way that the 

graph of y
{ }( , )x yi i i

n
=0

p x= ( )  passes through the points. With p(x), we can then estimate the unknown 
values of y(x) at any value of x (not only at the specified points). This numerical technique is 
called interpolation and p(x) is called an interpolating function. 
 

Remarks:   
 

• Interpolation has a wide range of applications, such as finding intermediate values in tables and 
replacing functions by simpler functions for differentiation and integration.  

• Given a set of data points { , the interpolation function p(x) is usually not unique. In 
this case, one should choose the best function to fit the data. 

}( , )x yi i i
n
=0

 
Polynomial Interpolation 

 
One of the most important and popular interpolations is polynomial interpolation. This is because 
the derivatives and integrals of polynomials are easy to determine.  Another more important reason 
is that for any continuous function, there exists a polynomial that is  as 'close' to the given function 
as desired, as implied by the following theorem. 

 
Weierstrass Approximation Theorem: 
 

If f  is defined and continuous on [ , , then for any ]a b ε  > 0, there exists a 
polynomial p n, defined on [ , , with the property that ]a b
 

( ) ( )  for all [ , ]nf x P x x a bε− < ∈ . 
 

Proof: (see Bartle "The element of Real Analysis", p165-172). 
 
Scope of this chapter 
 

Given a continuous function f(x), one could establish a Taylor polynomial of degree Pn(x) for the 
function at a point x0, as given in section 1.1. However, the Taylor polynomial agrees with the 
function only at the point of expansion (x0,f(x0)) and the approximation error magnifies with 
distance from this point. Thus, the use of Taylor polynomials is limited to the situation in which 
approximation is needed only in a small region around the point x0.  In this chapter we learn how 
to construct interpolating polynomials which exactly agree with a collection of data and thus 
provide a relatively accurate approximation over an entire interval instead of near a point only. 
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             Lagrange Polynomials  
 
 

7.1 

In this section, we consider the construction of a polynomial that passes through a given set of data 
points. 

 

Problem:    Let   , 1{ ,...... }o nx x x   be distinct numbers, 
               be associated function values. , 1{ ,...... }oy y yn

 

Find a polynomial P xn ( )of degree n that passes through the ( )n +1  data points, i.e.:   
        . ( ) , ( 0, )i iP x y i n= =

 
Now the key questions are:  Does such polynomial exist? If so, How to construct it? Is it unique?  

 

Uniqueness:  If there exists a polynomial of degree n, Pn(x), that passes through { , then it is 
unique.  

}( , )x yi i i
n
=0

 

Proof: (By contradiction) 
 

Suppose Pn(x) is not unique, then there exists another polynomial Q(x) with degree at most n 
satisfying the above conditions. Then P x Q xn ( ) ( )−  is a polynomial of degree n with (  zeros 
since  

)n +1

P x Q x y yn i i i i( ) ( )− = − =0  (i = 0 to n , )
 

which is impossible as a polynomial of degree n has n roots only.  Thus, the uniqueness is proved. 
                             � 

 
Existence:  There exists a polynomial of degree n passing through the (n+1) data points and is given by   

 
 The nth Lagrange interpolation polynomial 

∑
=

=
n

k
kkn xlyxP

0
)()( , 

where lk (k = 0,1,.., n) are basic Lagrange interpolating polynomials defined by 

∏
≠
= −

−
=

n

ki
i ik

i
k xx

xxxl
,0 )(

)()( . 

 
Proof     Firstly, we note that lk has the property that   

                                                                      
ki
ki

xl ik ≠
=

⎩
⎨
⎧

=
0
1

)(

Thus,  
            ( i=0, 1,...n),   0 0 1 1( ) ( ) ( ) ... ( ) ... ( )n i i i i i i n n i iP x y l x y l x y l x y l x y= + + + + + =
 

which indicates that the graph  y=Pn (x)  passes through the points (xi, yi) ( i = 0,1, ...n).               � 
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Example 7.1   Fit a line to 0 0 1 1( , ), ( , )x y x y   

Solution         01
1 0

0 1 1 0
 1, ( )

x xx x
n P x y

x x x x
⎛ ⎞ ⎛ ⎞−−

= = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
1y . 

 

Error Estimate: 
 

Polynomial interpolation usually can only yield approximate results. The following theorem is for 
estimating the error or the remainder term. 

 
Theorem 7.1 (Lagrange polynomial error formula)   If x x xn0 1, ,.......  are distinct numbers in    
  the interval [ ,  and ]a b f C a bn∈ +1[ , ], then for each x  in [ , ], a number a b ξ( )x  in    
  ] exists with [ ,a b

                                                    
[ ]( 1)

0

( )
( ) ( ) ( )

( 1)!

n n

n i
i

f x
f x P x x x

n
ξ+

=

= + −
+ ∏ , 

 

  where Pn  is the nth Lagrange interpolation polynomial. 
 

Notes:  The reminder term above has its practical use restricted to those functions for whose 
derivatives there are well-known bounds. 

 
Example 7.2   .  Assume using linear interpolation using (0, 1), ( , . Find the maximum 

error for 
f x e x( ) = − )1 1e−

x ∈[ , ]0 1 . 

))((
2

)(Error 10 xxxxf
−−

′′
=

ξ   

8
1

4
1

2
11)(max

2
1max)1)(0(max

2
1max 2

]1,0[

)(

]1,0[)(]1,0[
=•=•−=−−<

∈

−

∈∈
xxexxerror

x

x

xx

ξ

ξ
. 

 
Limitation:   
  

Using Lagrange polynomial interpolation, it is very inconvenient to pass from one interpolation 
polynomial to another of degree one greater. 
 
 

To avoid this problem, we can use the more general methods that utilize finite difference. Thus, in 
the following section, we introduce the concept of finite difference. In section 7.3, we introduce 
Newton interpolating polynomial. 

 
 

            Finite Difference  
 
 

7.2 
 

In this section, we first define the shift operator and various difference operations, then 
demonstrate how to calculate forward/backward and central differences by using difference table. 
Finally, we give several relations between operators. 
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Shift and Difference Operators 
 

For a given sequence (i )f f x ih= + , we define various operators as follows: 
 

        
  

shift operator E                            :    E ( ) ( )                        
forword difference operator   :    ( ) ( ) ( )             
backword difference operator :    ( ) ( ) (

f x f x h
f x f x h f x
f x f x f x

= +
Δ Δ = + −
∇ ∇ = − )             

central difference operator :     ( )      
2 2

h
h hf x f x f xδ δ

−
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + − −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

 

Remarks:   Higher order operators can be defined as follows: 
 

                                                 
1

( ) ( ),

( ).

k

k k

E f x f x kh
+

= +

Δ =Δ Δ
 

One of the convenient ways for calculating differences of different orders is by using 
difference tables, as detailed below. 

 
Calculation of Forward Differences  

 

0 0
0 1 0

2
1 1 0 1 0

3 2 2
1 2 1 0 1

2
2 2 1 2 1

0

2
3 3

x f
f

x f f f f

2 3

f f

f f f f f f
x f f f f

f
x f

−

Δ = Δ −Δ

− Δ = Δ −Δ

Δ = Δ −Δ
−

0
2

1 1 2 2 1
3 2 2

1 3 2 1
2

2 2 3 3 2
2

3 3

x f
f

x f f f f

f f

Δ =

Δ =

Δ =

 

 
Calculation of Backward Differences 

 
0 0

1 1

2 2

3 3

f f

f f f f f f
x f f f f

f
x f

−

∇ =∇ −∇

− ∇ =∇ −∇

∇ =∇ −∇
−f f

∇ =

∇ =

∇ =

 

 
 
 
 
 
 
 

h 

h 

h 

h 

h 

h 
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Calculation of Central Differences 
0 0

1/ 2 1 0
2

1 1 1 1 0
3 2 2

3/ 2 2 1 3/ 2 1 0
2 4

2 2 2 2 1 2 1
3 2 2

5/ 2 3 2 5/ 2 2 1
2

3 3 3 3 2

7 / 2 4 3

4 4

x f
f f f

x f f f f
f f f f f f

3 3
0x f f f f f

f f f f f f
x f f f f

f f f
x f

δ
δ δ δ

δ δ δ δ
δ δ δ δ δ δ

δ δ δ δ
δ δ δ

δ

= −
= −

= − = −
= − = −

= − = −
= −

= −

f f

x Δ Δ Δ
−

 

 

Example 7.3   Construct a finite difference table for  using h =1. f x x x( ) = +2

 

2 3( )
1 0

0
0 0 2

2 0
1 2 2

4 0
2 6 2

6
3 12

x f

 

h 

h 

h

h

   

Notes:   Δ  is constant, for polynomial of degree 2. In general if      2

 

P x a x a x a x an n
n

n
n( ) ......= + + +−

−
1

1
1 0       

     then    
1)   Δn

n n
nP a n h= ! ,   where h  is the step length in table, 

2)   P x !a nn
n

n
( ) ( ) = , 

  
Relations  between Operators 
 

(1)   Δ = −E 1,   or   E = +1 Δ  
      

  Proof:   Δf x f x h f x Ef x f x E f x( ) ( ) ( ) ( ) ( ) ( ) ( )= + − = − = −1                                               � 
  

(2)  ∇ = − −1 1E ,  or  E = − ∇ −( )1 1  
     

  Proof:    Use the inverse of E:     E Ef x f x− =1 ( ) ( ) 

          then                             , 1 ( ) (E f x h f x− + = )

          thus                             . 1 ( ) ( )E f x f x h− = −

     As              ∇ = − − = − = −− −f x f x f x h f x E f x E f x( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 , 
                 we have                        .                                                                     � 1(1 E )−∇= −
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(3)    
1 1
2E Eδ

−
= − 2 ,   or   

1
2 1E Eδ = −  

 

  Proof:   
1 1
2 2( ) ( )

2 2
h hf x f x f x E E f xδ

−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎜ ⎟⎟ ⎟⎜ ⎜ ⎜= + − − = − ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎟⎜⎝ ⎠
, 

     Thus 
1 1 1
2 2 2and 1E E E Eδ δ

−
= − = − .                                                                     � 

 

From (1) and (3), the following formulae can be derived: 
 

                       2 2 2 2
0 2 1( 1) 2 1            2E E E f f fΔ = − = − + ⇒Δ = − +  f

                  
21 1

2 1 22 2
02     ( ) 2 ( ) (E E E E f f x h f x f x hδ δ

− −
⎛ ⎞⎟⎜ ⎟= − = − + ⇒ = − − + +⎜ ⎟⎜ ⎟⎜⎝ ⎠

)           

As            
2( )( ) ( ) ( ) ( ) ( ) ...

2!
hDEf x f x h f x hDf x f x= + = + + +  

we have 

                  
2( )1 .

2
hD hDE e hD= = + + + ..  

from which  

                 
2 3

 ln ln(1 ) ...
2 3

hD E Δ Δ
= = +Δ =Δ− + +  

 

Propagation of Round-off Error in a Difference Table 
  

Function values are given to a fixed number of decimal places.  We assume, in general, that these 

are obtained by rounding procedure so that at most each function value has an error (δf ) of 1
2

±  

unit in the last decimal place.  At worst, the errors (expressed as units in last decimal place) will 
propagate as follows: 

2 3 4

1/ 2
1

1/ 2 2
1 4

1/ 2 2 8
1 4

1/ 2 2 8
1 4

1/ 2 2
1

1/ 2

fδ Δ Δ Δ Δ

+
−

− +
+ −

+ −
− +

− +
+ −

+ −
−

−

+

−

 

 

Obviously, the maximum error in the nth difference  = 2 1n−  units in the last decimal place.  
 

 



Ch 7  Interpolation and Polynomial Approximation    111 

Remarks 
(i)  Differences are said to have converged when they oscillate within the limits of  

unit of the last decimal place in the n  column of differences (nth order differences).  

12n−±
th

  

(ii) All differences from the one that has converged onwards should be neglected, they should 
not be used in interpolation. 

  
 
            Newton Interpolation Formulae  
 
 

7.3 

The forward, backward and central differences can be used to construct interpolation formulae for 
tables in which the abscissas {xi} are evenly spaced.  In addition, the differences can be used to 
determine the maximum degree of interpolation polynomial that can be used safely, based on the 
accuracy of the table entries.  Finite differences can be used to defeat noise in data, when the noise 
is large with respect to the rounding errors or uncertainty errors of physical measurements. 

 
Newton-Gregory Forward Formula 
 

Given { }  0 1 0, , ...... ,      ,    0, 1, 2.....n kx x x x x kh k= + =

           { }0 1, , ...... nf f f  
Find    . 0( )   where    ( integer)s sf x x x sh s= + ≠
 

From the Binomial theorem, we have       
   

                    2 3
0 0( ) (1 ) ( ) 1 ..... ( ),

1 2 3
s s

s
s s s

f E f x f x f x0

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟= = +Δ = + Δ+ Δ + Δ +⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 

where     u
k

u u u u k
k

⎛
⎝⎜

⎞
⎠⎟ =

− − − −( )( )[ ( )
!

1 2 1 ]       is the binomial coefficient. 

Neglecting differences of order higher than n, we obtain  
 

the nth Degree Newton-Gregory Forward Interpolating Polynomial  
 

            2
0 0 0 0( ) ( ) ......

2
n

n n
s s

P x P x sh f s f f f
n

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= + = + Δ + Δ + + Δ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠ 0

 
Error in Interpolation 
 

As proved in section 7.1, the nth degree polynomial passing through (n+1) given data points 
 is unique. Thus, the nth degree Newton-Gregory interpolating polynomial must be 

identical to the nth degree Lagrange interpolating polynomial. Consequently, the error in the 
Newton polynomial must be the same as that in the Lagrange polynomial and so the error formula 
for Lagrange polynomial (in section 7.1) can be used for the Newton polynomial:    

{ } 0( , ) n
i i ix y =
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where [ ]0 , nx xξ ∈ .  As the interpolation points are equidistant, we have 
 

                                          x x kh x x x shk s= + = = +0 0,  
 

Substituting the above into the error estimate formula yields 
 
The Newton-Gregory Interpolating Polynomial Error Formula
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Remarks:    If  is fairly constant,  then     f n( )+1 1
0( ) 1

n
s

sE x fn
+⎛ ⎞⎟⎜≈ Δ⎟⎜ ⎟⎜ +⎝ ⎠

  which is the 1st neglected term in  the Newton-Gregory Forward formula. 
 
Example 7.4    Find e  using the following difference table. 0 12.

 

       Solution    First construct the difference table below. 
2 3 4

0.0 1.000000
0.105171

0.1 1.105171 0.011061
0.116232 0.001163

0.2 1.221403 0.012224 0.000123
0.128456 0.001286

0.3 1.349859 0.013510 0.000134
0.141966 0.001420

0.4 1.491825 0.014930 0.000152
0.156896 0.001572

0.5 1.64

xx e Δ Δ Δ Δ

8721 0.016502
0.173398

0.6 1.822119

 

 
We take x0 0 1= . . Then since h  and  x=0 1= 0 1. 2 0. = +x sh , we have  
 

s =
−

=
0 12 0 1

0 1
0 2. .

.
.  

and   
0.12 2 3

0 0 0 0......
2 3
s s

e f s f f f
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟≈ + Δ + Δ + Δ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

(0.2)(0.2 1) (0.2)(0.2 1)(0.2 2)1.105171 (0.2)(0.116232) (0.012224) (0.001286) ..
2 6

− − −
= + + + +

 

     =             1.127501

xs 

x0 

 



Ch 7  Interpolation and Polynomial Approximation    113 

      

Error 4
0

(0.2)( 0.8)( 1.8)( 2.8) (0.000134) 0.000005
4 4!
s

f
⎛ ⎞ − − −⎟⎜ ⎟≈ Δ = =−⎜ ⎟⎜ ⎟⎜⎝ ⎠

    

   

∴    Answer is correct to 4D; e0 12 1 1275. .≈  
 

Exercise. Solve the problem with x0 0 0= . . 

     
Newton-Gregory Backward Formula 
     

Obviously it is inconvenient to use the Forward formula near the end of a table. In this case, we 
should use the following backward formula.  
 
From E and E= − ∇ −( )1 1 s s= − ∇ −( )1 , we have 
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Example 7.5    In the table of example 7.4, find e . 0 52.

                    
Solution    Choose .  0 0.6, 0.1 then 0.8x h s= = =−

                0.52 2 3
0 0 0 0

( 1) ( 1)( 2) .....
2! 6

s s s s se f  s f f f+ + +
≈ + ∇ + ∇ + ∇

                          1.822119 (0.8)(0.173398) (0.08)(0.016502) (0.032)(0.001572)
1.682030

= − − −

=
 
 
 
            Piecewise Interpolation and Cubic Splines  
 
 

7.4 

Motivation of Piecewise Interpolation 
 
As the number of interpolating points increases, the degree of the interpolating polynomial 
increases. However, high degree polynomials tend to be very wiggly and thus using one 
polynomial to fit all the data points may cause highly fluctuation or divergence in some region. 
 

 



114 

Eg.  For  f x
x

( ) =
+

1
1 25 2  defined in [-1, 1], the graphs of the function and its interpolating 

polynomials of degree 2, 3, 4 and 19 are shown in the diagram below. It is clear that for    

0 726 1. < <x , Pn (x) diverges as  n → ∞.    

 
 

Why does error increase with n ? 
n ( 1)

i=0

( )Let     ( )= ( - ),      then      ( ) ( )  
( 1)!

n

i n
fw x x x R x w x

n
ξ+

=
+∏  

For some functions,  increases faster than (n+1)! with increasing n and thus the 
error increases.     

f n( ) ( )+1 ξ

    
An alternative approach that avoids the above problem is to divide the interval into a collection of 
subintervals and construct a (generally) different approximating polynomial on each subinterval. 
Approximation by functions of this type is called piecewise polynomial approximation. 

  
The simplest piecewise polynomial approximation is piecewise linear interpolation that consists of 
joining a set of data points  
 

                 ( ) ( ) ( ){ }x f x x f x x f xn n0 0 1 1, ( ) , , ( ) , ...... , ( )  
 

by a series of straight lines.  A disadvantage of this approximation is that at each of the endpoints 
of the subinterval, there is no assurance of differentiability, which, in a geometrical context, means 
that the interpolating function is not smooth at these points. 

     
Another piecewise interpolation is piecewise quadratic interpolation, which consists of joining the 

set of data points { } 0( , ( )) n
i i ix f x =  by a series of parabolas.  The interpolating function can thus 

have continuous derivatives on [x0, xn], but may give large oscillation and high local curvature. 
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The cubic spline interpolation is the most common piecewise polynomial approximation using 
cubic polynomials between each successive pair of nodes.  A general cubic polynomial involves 
four constants. So there is sufficient flexibility in the cubic spline procedure to ensure  

 

• Not only that the interpolation is continuously differentiable on the interval, but also that it 
has a continuous 2nd order derivative on the interval.   

 

• The construction of the cubic spline does not, however, assume that the derivatives of the 
interpolation agree with those of the function, even at the nodes. 

 
Problem Description 

 
Given points  ( , ), ( ), .....( , ),x y x y x yn n1 1 2 2 ,   find in each of the n-1 intervals ( , ) ,x xi i i n+ = −1 1 1 a cubic 
polynomial 

 

 s x a b x x c x x d x xi i i i i i i i( ) ( ) ( ) ( )= + − + − + −2 3

−
−

−

−

                    (7.1) 
 

which satisfies the following conditions 

 (a)   - spline passes the left hand knot of the interval. ( )                  ( 1, 2,..., 1)i i is x y i n= =
 (b)    - spline passes the right hand knot of the interval. 1 1( )           ( 1, 2,...... 1)i i is x y i n+ += =

 (c)  - gradients match at internal knots. 1 1 1( ) ( )  ( 1,2,..., 2)i i i is x s x i n+ + +′ ′= =

 (d)  - curvatures match at internal knots. 1 1 1( ) ( )  ( 1,2,..., 2)i i i is x s x i n+ + +′′ ′′= =
 

where si  is a cubic polynomial defined on the subinterval x xi i, .+1  
 

                                    

S(x)

x1 x2 xi xi+1 x
i+2 xn-1 xn

s
1

si s
i+1

sn-1

x

 
 

Obviously, there are (4 4n − ) coefficients to be determined, but the constraints ( )ba,  and the 
continuity conditions (c) and (d) only give 4 6n − equations. Thus there are at least two degrees of 
freedom in choosing the coefficients of (7.1).  

 

These two extra equations can come from specifying the behaviors of the end points. Different 
choices of these end conditions lead to different types of splines:  

 

 (i)   ′′ = ′′ =s x s xn( ) ( )1 0       free or natural splines;  
 (ii)   ′ = ′s x f x( ) ( ),1 1 ′ = ′s x f xn( ) ( )n   clamped splines. 

 
Determination of   and    , ,i i ia b c id

 

First, introduce the simpler notation      
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   h x x s xi i i i i i= − = ′′+1 , (    )λ  
 

For the free cubic spline, we can derive (from conditions a-d and i ) the following linear system 
 

          

1 3 2 2 1
1 1 2 2 2

2 1
2 2 3 3

1 1
12 2 1 1

1 2

0
1 0 0 . .
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2( ) . 6
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0 

0 
 

for the determination of λ i . The coefficient matrix is tridiagonal and strictly diagonally dominant 
and thus the linear system can be solved with no pivoting in about 5n operations.  
 
Once λ i  are obtained, the coefficients of each cubic polynomial can be determined by 
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Thus, we obtain the cubic spline which is defined by (n –1) cubic polynomials  
 
                         s a  ,      (i =1, 2,  ...  n –1), b x x c x x d x xi i i i i i i i= + − + − + −( ) ( ) (2 )3
 

 
each of which is for one interval between two successive nodes. For example, si(x) is the 
approximation to y(x) on the interval (xi , xi+1). 
 

 

Example 7.6    Given f(2.2) = 0.520,  f(2.4) = 0.510,  f(2.6) = 0.481,  establish a cubic spline. 
 

 Solution    From the information given, we know 
 

                           x1 = 2.2,   y1 = 0.520,    

             x2 = 2.4,   y2 = 0.510,        

             x3 = 2.6,   y3 = 0.481,  

             h1 = h2 = 0.2. 

  Thus, the system of equations for λ1, λ2 and λ3   is               
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1

2

3

01 0 0
0.481 0.510 0.510 0.5200.2 2(0.2 0.2) 0.2   = 6 

0.2 0.2
0 0 1 0
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λ
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⎡ ⎤
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⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

                        . 1 3 2      0,    0.7125λ λ λ⇒ = = =−
 

 

Spline s1 for the interval [x1, x2]:  
 

  x1=2.2   
 

 

2 1 2 1
1 1 1 1

1

1 2 1
1 1

1

2
0.520,    = 0.02625,   

6

= =0,              = = 0.5938.  
2 6

y y
a y b h

h

c d
h

λ λ

λ λ λ

− +
= = = − −

−
−

 

Thus,    3
1( ) 0.520 0.02625( 2.2) 0.5938( 2.2)s x x x= − − − −

 
 

Spline s2 for interval [x2, x3]:        
 

  x2 = 2.4 

 

3 2 3 2
2 2 2 2

2

3 22
2 2

2

2
0.510,         ,  = 0.0975,  

6

= = 0.35625,    = =0.5938    
2 6

y y
a y b h

h

c d
h

λ λ

λ λλ

− +
= = = − −

−
−

 

Thus,    2 3
2 ( ) 0.510 0.0975( 2.4) 0.35625( 2.4) 0.5938( 2.4)s x x x x= − − − − + −

 
 
 
            Constructing Interpolating Polynomials using Maple/MATLAB  
 
 

7.5 

Constructing Interpolating Polynomials using Maple  
 

(1)    Given { } 1
( , ) N

i i i
x y

=
, the Maple statements for  constructing an interpolating polynomial is as 

follows 
 

> with(CurveFitting):    
> PolynomialInterpolation(X,Y,x, form=option) 

 

where X=[x0,x1,…,xn], Y=[y0,y1,...,yn], and options specify the form of results to 
be displayed, i.e., Newton, Lagrange or  Power. 
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Example    
 

 > with(CurveFitting): 
 > p:=PolynomialInterpolation([2, 2.5, 4],   
            [0.5, 0.4, 0.25], x, form=power); 

 

yields 
       2: 0.05000000000 0.4250000000 1.150000000p x x= − +  

 
To evaluate p(3) to approximate ,  enter (3)f

 

> sub(x=3.0) 
 

 which gives 0.325. 
 

(2)  Given { } 1
( , ) N

i i i
x y

=
, the Maple function  “spline( )”  can be used to construct piecewise 

splines on [x1,xn] via 
 

> spline([x1,x2,…,xn],[y1,y2,...,yn], x, degree); 
 

where degree is an integer or name (cubic) which refers to the degree of spline          
(default value 3). 

 
Example  

> s:=spline( [0,1,2,3], [0,1,4,3], x, cubic); 
        
       yields  
 

31 4
5 5

2 314 41 42
5 5 5

2 3151 54 6114
5 5 5 5

1
: 2

x x x
s x x x x 2

x x x otherwise

⎧⎪ + <⎪⎪⎪= − + − <⎨⎪⎪− + − +⎪⎪⎩

 

 
Constructing Interpolating Polynomials using MATLAB 
 

Given { , the MATLAB command } 1
( , ) N

i i i
x y

=
 

>> yi = spline(x,y,xi); 
 

can be used to receive a set of data points (x, y) and return the values of the cubic spline 
interpolation function yi at the intermediate points xi.  

 

Note :  spline(x,y,xi) is equivalent to interp1(x,y,xi, ‘spline’). 
 

Example 
>> x = [0 1 2 3];  
>> y = [0 1 4 3];  
>> xi = 0:.01:3; 
>> yi = spline(x,y,xi); 
>> plot(x, y, 'o', xi, yi, '-') 
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__________________________________________________________________________________ 

 
EXERCISE 7 

 

Q7.1   Use the following data to construct a third degree Lagrange polynomial approximation to f(1.09). 
The function being approximated is f(x) = log10 tan x. Use this knowledge to find a bound for the 
error in the approximation. 

 

                 f(1.00) = 0.1924,    f(1.05) = 0.2414,  f(1.10) = 0.2933,   f(1.15) = 0.3492 
           (Ans: 0.2826; 7.4*10-6) 
 
 

Q7.2  Use the following data to approximate f(2.15) using Newton forward difference formulas with  
degree 3 and 4 respectively. 

 

                             x: 2.0      2.1             2.2  2.3           2.4   
  

                          f(x): 1.414214    1.449138      1.483240 1.516575      1.549193 
 

  Then approximate f(2.38) using Newton’s backward difference formula of degree 2. 
 (Ans: 1.466288;  1.466288) 

 

Q7.3  Use the following data to construct a free cubic spline and then find an approximation to f(5.3) 
              

   x: 5.0         5.2  5.4 
 

  f(x): 2.168861       1.797350 1.488591 
     

(Ans:  1.637087) 
_________________________________________________________________________________ 
 
PROGRAMMING 
 
Q7.4 Write a well-structured Fortran program for constructing a free cubic spline passing through  n 

distinct points (xo, yo), … ..., (xn, yn ). Then, use the program to  
(1) solve the problem in Q7.3;  
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(2) construct a free cubic spline to approximate f x x( ) cos= π  by using the values given by f(x)   
at  x = 0, 0.25, 0.5, 0.75 and 1.0. 

 

Algorithm: 
 

Main Program 
 
       INPUT:  n, x1, x2,..., xn,   y1, y2, ..., yn 
       Call  CTriDS  (Input: N, X, Y;  Output: aa, dd, cc, bb)    – Construct the tridiagonal system (Coef. & RHS) 
       Call  SolTriDS (Input: n, aa, dd, cc, bb;  Output: λi  ) – Solve the tridiagonal system. 
       For i = 1 to n –1 Do 
             set  a y b y y

h
h c d

hi i i
i i

i

i i
i i i i

i i

i
= =

−
−

+
= =

−+ + +, , ,1 1 12
6

1
2 6

λ λ λ λ λ

 
       Output ( 'On subinterval [** , **]' S a  using the result obtained) b x x c x x d x xi i i i i i i i= + − + − + −( ) ( ) (2 )3

       End 
 

Subroutine  CTriDS(N, X, Y, AA, DD, CC, BB) 
 

        where  N   = Input:  number of data points. 
    X(:),Y(:) = Input: before entry, must contain the x and y coordinates of the points. 
 AA(:) = Output:  on exit, contains the sub-diagonal elements of the coefficient matrix. 
 DD(:)   = main diagonal 
 CC(:)   = super-diagonal 
 BB(:)    = Output: on exit, contains the right hand side of the tridiagonal system. 
 

For i = 1 to n – 1  
     set h x xi i= −+1 i

h dd h h cc h− −= = + =

 
set  dd1=1,  cc1= 0,  ddn=1,  aan= 0, bb1= 0,  bbn= 0 
For i = 2 to n –1  

[ ] set  aa   1 1,  2( ) ,  i i i i i i i 1 1 16* ( ) / ( ) /i i i i i i ibb y y h y y h+ − −= − − −  
_____________________________________________________________________________________ 
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       Numerical Integration and Differentiation  

CHAPTER 

8 

 
 

The need to evaluate ( )
b

a
f x dx∫  numerically usually arises in the following cases 

• f(x) is known as tabulated values only;     

• f(x) is not integrable analytically, for example, when or  f x x( ) e=
2 31 x− . 

The method for approximating is called numerical quadrature that uses a sum of the type 
 

 
to approximate the integral. In this chapter, we will study various numerical 

quadrature rules.
 

f x dx
a

b
( )∫

c f xi
i

n

i
=
∑

0

( )

 
 

            Newton-Cotes Formulas  
 
 

8.1 

 

The Newton-Cotes formulas are based on Newton's interpolating formulas. To evaluate  

                                                                , f x dx
a

b
( )∫

we first select a set of equidistant nodes {xo= a, x1 ,………, xn = b} with step size ( ) /h b a n= −  in 
the interval [a, b], and let 

 h

a=x0 x1 xn=bx2 

h
                                   0x x sh= + .   
 
  

Thus from Newton's forward interpolating formula, we have 
  

                                               0( ) ( ) [ ( )]nf x P x sh R xξ= + + ,                                                      (8.1) 
  

where 0( ) [ , ]nx x xξ ∈    and 

                                   2
0 0( ) 1 ... (

1 2
n

n
s s s

P x sh f x
n

)
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟+ = + Δ+ Δ + + Δ⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

                                   . 1 ( 1)[ ( )] [ ( )]
1

n ns
R x h f x

n
ξ ξ+ +⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠

  

Approximating the integrand f(x) by ,  we obtain Newton-Cotes formula of degree n. ( )nP x
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  Newton-Cotes formula of degree n :    0( ) ( )
b b

n
a a

f x dx P x sh dx≈ +∫ ∫
 
                   (8.2) 

                       with error:                                         (8.3) ( )1 ( 1)( ) ( ) ( ) .1
b b

n n

a a

sE R dx h f dxnξ ξ ξ+ += = +∫ ∫

 
Remarks  The form of quadrature formulae depends on the degree of the interpolating polynomial 

used. The following quadrature formulae arise from the cases where n=1, 2 and 3. 
 

 
Trapezoidal Rule (n =1) 
 
 

For n =1, the integration interval is [x0, x1] and f(x) is approximated by the interpolating 
polynomial of degree one, namely  

 

1 0( ) ( ) 0f x P x f s f≈ = + Δ  
 

with interpolating error      where 2 ( )
2
s

 h f ξ
⎛ ⎞⎟⎜ ′′⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠ 0 1 [ , ]x xξ ∈ .  Thus 

 

    

( ) ( )

[ ]

1 1

0 0

1

0 0 0 0
0

12
1

0 0 0 0 00
0

( )

1 1 ( )
2 2 2

x x

x x
f x dx f s f dx h f s f ds

shf s h f h f f h f f

≈ + Δ = + Δ

⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎟⎜= + Δ = + Δ = +⎟⎜⎢ ⎥ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫ ∫

1 ,

                        (8.4) 

  

   
1

0

13
2

0
2( ) "[ ( )] ( 1) "[ ( )]

2

x

x

hsE h f x dx s s f xξ ξ ξ
⎛ ⎞⎟⎜= = −⎟⎜ ⎟⎜⎝ ⎠∫ ∫ ds .                                             (8.5) 

  
As  g(s)= s(s–1)  is of one sign on [0, 1] , by using the mean value theorem for integrals (see 
section 1.1), we have from (8.5) that 
 

   
13 3

1
0

[ ] ( ) ( 1) ( )
2 1
hE f s s ds fξ ξ′′ ′′= − =−∫ 12

h
ξ .                                                           (8.6) 

 

In summary, for n=1, Newton-Cotes formula reduces to the Trapezoidal rule as below: 
 

Trapezoidal Rule:    
1

0

0 1
1( ) ( )
2

x

x
f x dx h f f= +∫  

with Error:               
3

1 1 1( ) ( ), [ , ].
12
hE f xξ ξ ξ′′=− ∈ 0 1x               
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Remark: 
 

Graphically, in Trapezoidal rule, the curve of f(x) is approximated by a straight line of .  1( )P x
The exact value of the integral = area between the x-axis and the curve y = f(x) from 0x  to 1x ; 
while the numerical value of the integral = area between the x-axis and the straight 
line from1( )y P x= 0x   to 1x . 

 

                                                          

f(x)

x0

f(x)

x1

f0
f1

 

P1(x)

   x 
 

      Fig. 8.1 Schematic diagram for Trapezoidal rule 
 
Simpson's 1/3 Rule (n = 2) 
 

For n = 2, the integration interval consists of two equal subintervals with nodes x0, x1 and x2. The 
integrand f(x) is approximated by the interpolating polynomial of degree two P2(x).  Thus, we have 

 

     
2 2

2
0 0 0

0 0

( 1)( )
2

x x

x x

s sf x dx f s f f dx
⎛ ⎞− ⎟⎜≈ + Δ + Δ ⎟⎜ ⎟⎜⎝ ⎠∫ ∫    

                                                
2

2
0 0 0 0 1

0

( 1) 1 ( 4
2 3

s sh f s f f ds h f f f
⎛ ⎞− ⎟⎜= + Δ + Δ = + +⎟⎜ ⎟⎜⎝ ⎠∫ 2 ) .              (8.7) 

 

As the integral of the next term    
 

                           
2

3
0

0

( 1)( 2) 0
6

x

x

s s s f dx− −
Δ =∫ ,  

 

we have the error estimate formula 
 

                            
2

0

4 (4) 5 (4)
1

( 1)( 2)( 3) 1( ) ( ) ( )
24 90

x

x

s s s sE h f dxξ ξ
− − −

= =∫ h f ξ− . 

 

Note that, s(s –1)(s –2)(s –3) changes sign on [0, 2]. 
 

In summary, for n=2, Newton-Cotes formula reduces to Simpson’s 1/3 rule as below: 
 

Simpson’s 1/3 Rule:    
2

0

0 1 2
1( ) ( 4 )
3

x

x
f x dx h f f f= + +∫  

with Error:                  
5

(4)
1 1 1( ) ( ), [ , ].

90
hE f xξ ξ ξ=− ∈ 0 2x             
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Simpson's 3/8 Rule (n = 3) 
 

By approximating the integrand f(x) by Newton’s forward interpolating polynomial of degree three 
P3(x), we obtain 

 

 Simpson’s 3/8 Rule:      ( )f x dx P x sh dx
h

f f f f
x

x

x

x

( ) ( ) ,

0

3

0

3

3 0 0 1 2 3
3
8

3 3∫ ∫≈ + = + + +  

 

 with Error                      ],[   ),(
80
3)( 3011

)4(5
1 xxfhE ∈−= ξξξ  

 
Notes:  Both the Newton-Cotes formulas for n=2 and n=3 have error in the order of h5, i.e O(h5), 

and the coefficients in the error expressions indicate that the quadrature for n=2 is 
unexpectedly accurate. This phenomenon is true for all even-order Newton-Cotes 
formulas. 

  y

                     

 

x0 x1 x2

x 

f(x)

f0 f1 f2

y=f(x) 

 

P2(x) P3(x) 

 y=f(x) 

x2 x3
 x 

x x0 1
 
                 Fig 8.2 Diagram for Simpson’s 1/3 rule                   Fig 8.3 Diagram for Simpson’s 3/8 rule  
  
 
 

            Composite Numerical Integration 
 
 

8.2 

The Newton - Cotes formulas are generally unsuitable for use over large integration intervals, as 
high-degree polynomials would be required for use over such interval but the coefficients in these 
polynomials are difficult to obtain. In addition, due to the oscillatory nature of high-degree 
polynomials, integration using such polynomials may yield inaccurate results. Thus, a piecewise 
approach to numerical integration that uses the low-order Newton - Cotes formulas is generally 
applied in practice. 
 

Composite Trapezoidal Rule 
   

Subdividing the interval [a, b] into n subintervals [xi-1, xi] (i=1,2,…n) and then using the 
Trapezoidal rule on each subinterval, we have  y

    

               1
1 11

( ) ( ) ( )
2

xb in n

i i
i ia xi

hf x dx f x dx f f−
= =−

= =∑ ∑∫ ∫ +  

                               0 1 1( 2 ... 2
2 n
h f f f f− )n+ + +  = + ;   

 y=f(x) 

 x 
a =x b=xn0
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               3 3

1 1

1 1( ) ( )
12 12

n n

i i
i i

E h f h fξ ξ
= =

′′ ′′= − =−∑ ∑ . 
 

Assume that  is continuous, then by the mean value theorem for integrals, there 
exists such that  

"f
[ , ]a bξ ∈

                                                  
1

1"( ) "( )
n

i
i

f f
n

ξ ξ
=

= ∑ , 

and thus, 

                 21 ( ) ''(
12

E h b a f ξ=− − ) . 
 

In summary, the composite trapezoidal rule with error is as follows: 
 

Composite Trapezoidal Rule:    
1

1
( ) ( ) ( ) 2 ( )   where  

2

b n
i i

ia

hf x dx f a f b f x x a ih
−

=

⎡ ⎤
⎢ ⎥= + + = +⎢ ⎥
⎣ ⎦

∑∫  

with Error:                                  
2

"( ) ( ) ( )   where [ , ].
12
hE b a fξ ξ ξ=− − ∈ a b

, ]i i

              
 

Notes:  Local errors (in one interval) are O(h3); global error (in n intervals) is O(h2). 
 
Composite Simpson' 1/3 Rule 
 

We first subdivide the interval [a, b] into n subintervals [xi-1, xi] (i=1, n) and then use Simpson's 
1/3 rule on each consecutive pair of subintervals.  As each application of Simpson’s 1/3 rule 
requires two subintervals, n must be an even number, that is  n=2m, so that the n intervals can be 
grouped into m pairs [ 2( 1) 2x x− i (i=1, m) each with 3 equidistant nodes 2 2 2 1 2,  and i ix x x− − .  
 

y =f(x)

x 

y

a=x0 x2 x4 x6

 
 
 
 
 
 
Application of Simpson’s 1/3 rule on each pair yields 

 
 

Composite Simpson’s 1/3 Rule:  
 

                                             ( )
2

0 1 2 3 1
1 2( 1)

( ) ( ) 4 2 4 ..... 4
3

xb im

n n
ia x i

hf x dx f x dx f f f f f f−
= −

= = + + + + +∑∫ ∫ +  

 

with Error    4 (4)( ) ( )
180
b aE h fξ ξ
−

=− . 
 

Notes: We have used   (4) (4)

1
( ) ( )

2

m

i
i

nf fξ ξ
=

=∑ .    
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Algorithm  for Composite Simpson' 1/3 Rule 

 To approximate the integral

 

 I f x d
a

b

= ∫ ( ) x

 INPUT endpoints a,b; even positive integer n 
 Set h=(b–a)/n 
 XI0= f(a)+ f(b) 
     XI1= 0 (for summation of f(x2i–1)) 

     XI2= 0 (for summation of f(x2i) ) 

 For  i=1,..., n–1 do 

   Set x = a+ih 

   If i is even then  

  set XI2=XI2+f(x) 

          else  

  set XI1=XI1+f(x) 

 Set XI=h*(XI0+2*XI2+4*XI1)/3.0 

 OUTPUT (XI) 

 STOP 

 
 
Composite Simpson's 3/8 Rule 
 

We first subdivide the interval [a, b] into n subintervals [xi-1, xi] (i=1, n) and then use Simpson's 
3/8 rule on each three of subintervals. Since each application of Simpson's 3/8 rule requires three 
subintervals, n must be equal to 3m so that the n subintervals can be made into m 
groups[ 3( 1) 3x , ]i ix− i (i=1, m) each with 4 equidistant nodes 3 3 3 2 3 1 3, ,  and i i ix x x x− − − . Application 
of Simpson’s 3/8 rule on each 3 consecutive subintervals yields 

 
Composite Simpson’s  3/8 Rule 

 

 ( )0 1 2 3 4 5 3 2 1
3( ) 3 3 2 3 3 ... 2 3 3
8

b

n n n
a

h
nf x dx f f f f f f f f f f+ − − −≈ + + + + + + + + +∫  

 
 Notes:  This rule is useful in the case in which we cannot apply Simpson’s 1/3 - rule when there 

are only an odd number of subintervals. 
 
 

            Romberg Integration 
 

 

8.3 

General Form of Error Term 
 
 

From the Euler - Maclaurin Theorem  (see Atkinson, An introduction to Numerical Analysis), we 
can determine the specific form of the error term for different quadrature rules. 
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In general, provided that the integrand f(x) has continuous derivatives, the truncation error for the 
composite Trapezoidal rule (Trap) and the midpoint rule (MPR) is 

 

                       2 4 6
2 4 6

1 1 1...... .......TE Ah Bh Ch A B C
n n n

= + + + = + + +                                  (8.8) 
 

while for the composite Simpson's rule,       
                

                       4 6
4 6 8

1 1 18 ...... ......sE Ah Bh Ch A B C
n n n

= + + + = + + +  . 

 
Romberg Integration Scheme 

Let In be the numerical approximation of

 

( )
b

a
I f x dx= ∫

 

obtained by using the composite 

Trapezoidal rule with n subintervals, then 
 

                         2 4 6 .......n
A B CI I
n n n

= + + + +                                     (8.9) 
 

                         2 2 2 4 4 6 6 .......
2 2 2n

A B CI I
n n n

= + + + +                                  (8.10) 
 

4*(8.10)-(8.9) and rearranging yields 
 

                         2
2 ,24 6 4 6

4 5 ... : ...
3 4 16

n n
n

I I B C B CI U
n n n n

′ ′−
= − − − = + + +                                (8.11) 

 

Now, by using the above extrapolation in a systematic way, we can gradually eliminate the lower 
order terms of (1/n) in the error and thus increase the accuracy of the approximation. 

 
From (8.11), by replacing n by 2n, we have 

 

                         I U B
n

C
nn= + + +4 2 4 4 6 62 2,

' ' ...                                                                                 (8.12) 
 

16*(8.12)-(8.11) and rearranging yields 
 

                     4 ,2 2 ,2
4 ,36 6

16
  ... : ...

16 1
n n

n
U U C CI U

n n

− ′′ ′′
= + − = +

−
+                                                (8.13) 

 

Thus we can obtain the following table (Romberg integration table) row by row starting from row 
one, 

 

                               2 2 ,2

4 4 ,2 4 ,3

n

n n

n n n

I

I U

I U U
 

To simplify notation, we denote  
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                                1 1 2 4 ,1 1,1 2,1 3,12
( , ,  ,...) by   ( ,  ,  ,...) and  i iI I I I R R R R−

 

                              .    1 2, 4, 8, , 2, 3, 4,2 ,
 ( , , ...) by   ( , , ...)i j j j i j j j jj

U U U U R R R R−

 

 Then we have the following Romberg integration table 
 

                               

1,1

2,1 2,2

3,1 3,2 3,3

,1 ,2 ,n n n

R

R R

R R R

R R nR
 

Remark 1 (Construction Strategy for the Romberg Table) 
 

The truncation error associated with the jth column of the table is . Thus, the diagonal 
elements converge to the solution with the highest rate, and so we should construct the table row 
by row. For each row (say the ith row), we first calculate Ri,1 by using the composite Trapezoidal 
rule 

2(1/ )jO n

               ( )
22

,1 1 1,1 1 1 12
1

1( ) ( 1/ 2) , where 
2 2

i

i i i i i i i i
k

b aR I h R h f a k h h
−

− − − − −
=

⎡ ⎤
⎢ ⎥ −

= = + + − =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ,               (8.14) 

then using the calculated value to obtain the successive elements in the row Ri,j (j = 2, 3,  ..., i) by 
 

                                                     

R
R R

ij

j
i j i j

j=
−

−

−
− − −
−

4
4 1

1
1 1
1

, , 1 .                                                                                              (8.15) 
 

Remark 2 (Conditions for using Romberg integration) 
 

Romberg integration applied to f(x) on [a, b] relies on the assumption that the composite 
trapezoidal rule has an error term that can be expressed in the form of equation (8.8); that is, we 
must have f x C a bk( ) [ , ]∈ +2 2  for the kth row to be generated. 

 

Example 8.1: Calculate 
0

sin xdx
π

∫

 

using Romberg integration scheme. 

Solution. Firstly, generate column one using the composite trapezoidal rule with 1, 2, 4 and 8

 

subintervals respectively. Then calculate Ri,j using (8.15)  for j=2,3,4; i=j to 4. The 

computed results are as follows. 

                                           

N i Trap R R Ri i i

. .

. . .

. . . .

, , ,2 3 4

2 09439511
2 00455976 1 99857073
2 00026917 1 99998313 2 00000555

.
1 1 0
2 2 1 57079633
4 3 1 89611890
8 4 1 97423160  
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eg. R
R R

2 2

2 1
2 1 11

2 1
4

4 1
4 1 57079633 0

3
2 09439511,

, , * . .=
−

−
=

−
=

−

−   
 

                             
R

R R
3 2

2 1
3 1 2 1

2 1
4

4 1
4 1 89611890 1 57079633 0

3
2 00455976,

, , * . . .=
−

−
=

− −
=

−

−  

                     . 4,4
0

     sin 2.00000555xdx R
π

∴ ≈ =∫
 

 
 

            Gaussian Quadrature 
 

 

Since 
 
t

x a b
b a

=
− +
−

 
 maps the interval [a, b] for x onto [-1, 1] for t, we only need to consider 

  
where w(x) is a positive weight function. Clearly, any integral can be written in 

this form as:  

8.4 

2 ( )

1

1
( ) ( )w x f x dx

−
∫

( )( ) ( ) ( ) ( )
( )

g xg x dx w x dx w x f x d
w x

= =∫ ∫ ∫ x . 

 

Principle of Gaussian Quadrature 
 

Consider evaluating a definite integral numerically by   
 

                                                                                 f x dx c f xi
i

n

i( ) ( ).=
− =
∫ ∑
1

1

1
 

All the Newton-Cotes formulas require that xi are spaced equally. If the function is given 
explicitly, however, the points for evaluating the function can be chosen in a manner that leads to 
increased accuracy of approximation.  
 
Gaussian quadrature is concerned with choosing the points xi and the constants ci for evaluation in 
an optimal manner to minimize the error in the approximation. 

 
Methods for Determination of xi and ci for second order Gaussian Formula   
 

For the cases where n = 2 and w(x) =1 
 

                             
.                                                               (8.16) 

1

1 1 2 2

1

( ) ( ) ( )f x dx a f x a f x
−

≅ +∫
 

The integration points xi and the constants ci  are such determined to make the above formula exact 
for   f(x)=1,  x,  x2,  x3,  i.e., to make it exact for any cubic polynomials. Substituting  f(x)=1,  x,  
x2,  x3  into (8.16) respectively yields 
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                            2 1= 2+a a ,      
 

              0 1 1 2 2= +a x a x  ,       

                           2
3 1 1

2
2 2

2= +a x a x ,      
 

                           . 0 1 1
3

2 2
3= +a x a x

 
Solving the above system of nonlinear equations yields 

 

             1 2 1
1 1, ,
3 3

x x a a= =− = 2 1.=  

 

       ∴ = − +
−
∫ f x dx f f( ) ( ) ( ).

1
3

1
3

1

1

 

 

This is a 2-point Gaussian quadrature formula. It is exact for any third (2*2-1) degree polynomials. 
In general, an nth order Gaussian formula is exact for any 2n-1degree polynomials. 

 
Determination of xi and ci for Higher - Order Gaussian Formulas. 
  
 

For higher-order Gaussian formulas, the method presented above requires solving a set of 
nonlinear equations of higher order that is very difficult. Thus, an alternative procedure, as 
described by the theorem below, has been derived for the determination of xi and ci, based on the 
properties of orthogonal polynomials. 

 
 

Theorem:  If P is any polynomial of degree less than or equal to 2n –1, then 
 

 
1 1

111 1

( )
( ) ( ),  where  

( )

n n j
i i i

ji i j
j i

x x
P x dx c P x c dx

x x==− −
≠

−
= =

−
∑ ∏∫ ∫  

 

and  x1,  x2,  … …,  xn are the zeros of the nth Legendre polynomial. 
 

 
 

                   Proof: (see Burden & Faires, Numerical Analysis). 
   

So, for a general function f(x), we use the following Gaussian quadrature formulas: 
 

                                                
f x dx c f xi

i

n

i( ) ( ).=
− =
∫ ∑
1

1

1
 

where{xi} and {ci} are defined in the above theorem but in practice they are tabulated and are 
available in mathematics handbooks. 
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Types of Gaussian Quadrature Formulae 
 

Depending on the integrand and the integration limits, there are different types of Gaussian 
quadrature formulae as listed below 
 

Gauss-Legendre:         f x dx w f xi
i

n

i( ) ( )=
=−
∑∫

11

1

  

Gauss-Laguerre:         
10

e ( ) (
n

x
i i

i
f x dx w f x

∞
−

=
=∑∫ )

 

Gauss-Hermite:          
2

1
e ( ) (

n
x

i i
i

f x dx w f x
∞

−

=−∞

=∑∫ )

  

Gauss-Chebyshev:    
1

2 11

1 ( ) ( )
1

n

i i
i

f x dx w f x
x =−

=
−

∑∫ . 

 
 

Tables for the values of wi and xi for the various types of Gaussian formulae can be found from 
"Handbook of Mathematical Functions" by Abramowitz and Stegun. The following table is an 
example. 

                                      Parameters for Gaussian Quadrature  
1

11
( ) ( )

n

i i
i

f x dx w f x
=−

=∑∫
 

n xi wi

2 0.57735027±  1 

3 0 
 

0.88888889 
0.55555556 0.77459667±

33998104.0±  4  
0.65214515 
0.34785485 86113631.0±

 

Example 8.2: Evaluate 
0

cosxI e x d
π

= ∫ x   using the 3-point Gaussian quadrature formula. 

Solution:    Let    2 ( ) 2x a b xt
b a

π
π

− + −
= =

−
.  

                   Then   (1 ),   
2 2

x t dx dtπ π
= + =   and 

                            
1 1

( 1)
2

1 1

  cos ( 1) : ( )
2 2 2

t
I e t dt f t dt

π
π π π+

− −

⎡ ⎤
⎢ ⎥= + =
⎢ ⎥⎣ ⎦∫ ∫  

                                 [ ]0.556 ( 0.775) 0.889 (0) 0.556 (0.775) 12
2

f f fπ
= − + + =− . 
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            Multiple Integrals 
 

 

8.5 

The techniques for evaluating single integrals can be adapted for use in the approximation of 
multiple integrals.  To evaluate the double integral 

                                     (8.17) ( , ) ,
b d

a c
f x y dydx∫ ∫

we first write the integral as an iterated integral 

    ( , ) .
b d

a c
f x y dy dx

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∫ ∫                                  (8.18) 

Then, treating x as a constant, we can use the techniques for single integrals to evaluate the inner 
integral   

                                                ( , )
d

c
f x y dy∫

to yield a function  F(x), and thus the  double integral becomes 

    ( ) ,
b

a
F x dx∫                                   (8.19) 

which again can be evaluated using the techniques for single integrals.  In the following, we 
present two specific forms of quadrature for double integrals.  

 
Composite Trapezoidal Rule for Double Integrals 

Subdivide the integral [a, b] into n subintervals with step size b ah
n
−

=  and nodes  0 1, ,..., ;nx x x   

and subdivide the integral [c, d] into  m  subintervals with step size d ck
m
−

=  and nodes  

 Then by using the composite Trapezoidal rule, we have 0 1, ,..., .my y y
 

             
1

02
1

( , ) ( ( , ) ( , ) 2 ( , )
b d b m

k
m j

ja c a
f x y dydx f x y f x y f x y dx

−

=

⎡ ⎤
⎢ ⎥= + +⎢ ⎥⎢ ⎥⎣ ⎦

∑∫ ∫ ∫  

    ( )
b

a
F x dx= ∫  

    
1

0
1

( ) ( ) 2 ( )
2

n

n
i

h
iF x F x F x

−

=

⎡ ⎤
⎢= + +⎢⎣ ⎦

∑ ⎥
⎥
                                                                      

                                                   

[ ]

1

0 0 0 0
1
1

0
1

1 1

0
1 1

( , ) ( , ) 2 ( , )
2 2

( , ) ( , ) 2 ( , )
2

2 ( , ) ( , ) 2 ( , )
2

(

( )

)

}

{
m

m j
j
m

n n m n j
j

n m

i i m i j
i j

h k f x y f x y f x y

k f x y f x y f x y

k f x y f x y f x y

−

=
−

=
− −

= =

= + +

+ +

+ + +

∑

+ ∑

∑ ∑
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                                  [ ]

 0 0 0 0
1 1

0 0
1 1

1 1

1 1

( , ) ( , ) ( , ) ( , )
4

2 ( , ) ( , ) 2 ( , ) ( , )

4 ( , )}.

{ m n n m
m n

j n j i i m
j i

n m

i j
i j

kh f x y f x y f x y f x y

f x y f x y f x y f x y

f x y

− −

= =

− −

= =

= + + +

⎡ ⎤+ +⎢ ⎥⎣ ⎦

+

++ ∑ ∑

∑ ∑

             

 (8.20)

 

 
Gaussian Quadrature for Double Integrals 
 

We first must transform the region of integration 
 

                                      { }R ( , ) | ,x y a x b c y d= ≤ ≤ ≤ ≤  
into 
                                      { }R ( , ) | 1 1, 1 1u v u v= − ≤ ≤ − ≤ ≤  
 

by using the linear transformations 
 

                  2 ( ) 2 ( ), .x a b y c du v
b a d c
− + − +

= =
− −

                                                      (8.21) 

Hence, we have 

       [ ] [ ]1 1( ) ( ) , ( ) ( )
2 2

,x a b b a u y c d d c v= + + − = + + −  

       1 ( )( ) : | |
4

dxdy b a d c dudv J dudv= − − = ,  
 

        
1 1

1 1
( , ) ( , ) | | ,

b d

a c
I f x y dxdy f u v J dudv

− −

= =∫ ∫ ∫ ∫  

 

where  ( , ) ( ( ), ( )),f u v f x u y v=  and | | . ( )( ) / 4J b a d c= − −
 
By applying an n-point Gaussian quadrature with respect to v and u respectively, we have  
 

          
1 1 1 1

1 1 1 1
( , ) | | ( , ) | |I f u v J dudv f u v J dv du

− − − −

⎛ ⎞⎟⎜ ⎟⎜= = ⎟⎜ ⎟⎟⎜⎝ ⎠
∫ ∫ ∫ ∫

1

11
( , ) | |( )

n

j j
j

f u v J w du
=−

= ∑∫  

                                                    
1 1

( , ) | |
n n

i j i j
i j

f u v J w w
= =

=∑∑ ,                                                   (8.22) 

where    are integration points and    are their associated weights.  For n=3, the 

 and are as follows: 

( )i ju v ( )i jw w

( )i ju v ( )i jw w
 

n ( )i ju v  ( )i jw w  

 
3 
 

-0.774596 
0 

+0.774596 

0.555556 
0.888889 
0.555556 
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Remarks 
 

(1) The techniques in the above can be modified to approximate double integrals with variabe 
inner limits, i.e., over the region  { }R ( , ) | , ( ) ( )x y a x b c x y d x= ≤ ≤ ≤ ≤ . 

 

(2)  The technique in the above can be extended for triple integrals. 
 
 

            Numerical Differentiation 
 
 

8.6 

Let  0 1, ,..., nx x x  are  (n+1) distinct numbers in some interval  I  and that  . Then  1( )nf C +∈ I
 

              
[ ]( 1)

00

( )
( ) ( ) ( ) ( )

( 1)!

nn n

i i iii

f x
f x f x l x x x

n
ξ+

==
= + Π

+
∑ −                   (8.23) 

 

for some  ( )xξ  in I, where  l x  is the ith Lagrange coefficient polynomial for  f, i.e.  ( )i
    

                                              
0

( )
( ) .

( )

n j
i j i jj i

x x
l x

x x=
≠

−
= Π

−
 

 

Differentiation of (8.23) with respect to x yields 
 

     [ ]' ( 1)

00

1'( ) ( ) ( ) ( ) ( )
( 1)!

n n
n

i i iii
f x f x l x f x x x

n x
ξ+

==

∂
= + Π

+ ∂
∑ −   

                           [ ]( ( 1)

0

1 ( ) ( )
( 1)!

n
n

ii
).x x f x

n x
ξ+

=

∂
+ Π −

+ ∂
                              (8.24) 

At  ,kx x=  

     [ ]' ( 1)

00

1'( ) ( ) ( ) ( ) ( )
( 1)!

n n
n

k i i k k kii i xk

if x f x l x f x x
n

ξ+

==
≠

= + Π
+

∑ x−                              (8.25) 

 

Applying this technique using the first order Lagrange polynomial at  0x  and  for some 
value  λ   produces the following   

0x λ+

 
  

  2-point  formulae:  0 0
0

( ) ( )
'( ) "( ),

2
f x f x

f x f
λ λ

ξ
λ

+ −
= −    where 0 0[ , ].x x hξ     ∈ +

 

 
     Remarks 

(i) If   then 0hλ = > 0
0

( ) (
'( ) 0 )f x h f x

f x
h

+ −
=   is called the      forward difference formula  

and the error is  2 "( )hE f ξ=−  where 0 0[ , ]x x hξ ∈ + ; 

If   then  0hλ =− < 0 0
0

( ) ( )
'( )

f x f x h
f x

h
− −

=  is called the backward difference formula 

and the error is  2 "( )hE f ξ=  where 0 0[ , ]x h xξ . ∈ −
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(ii) The above formulae can also be derived from Taylor’s theorem.  
 

Using (8.25) at 0 1 0,x x x= + h  and   2 0 2x x= + h  produces the following 
 

 

3-point forward difference formulae:  

              ( )
2

(3)
0 0 0 0

1'( ) 3 ( ) 4 ( ) ( 2 ) ( ).
2 3

hf x f x f x h f x h f
h

ξ= − + + − + +  

               where 0 0[ , 2 ]x x hξ ∈ +  
 

 
 

Using (8.25) at  0 , 0x h x−   and  0x h+   yields the following 
 

 

 3-point central difference formulae:    
2

(3)
0 0 0

1'( ) ( ( ) ( )) ( ),
2 6

hf x f x h f x h f
h

ξ= + − − − ]  where  0 0[ ,x h x hξ . ∈ − +

 
 

                Remarks:  The above formulae can also be derived from Taylor’s theorem. 
 
 

Using (8.25) at  0 0 0 02 , , ,x h x h x x h− − +  and 0 2x h+  yields the following 
 

 

5-point central difference formulae: 

    
4

(5)
0 0 0 0 0

1'( ) ( ( 2 ) 8 ( ) 8 ( ) ( 2 )) ( ),
12 30

hf x f x h f x h f x h f x h f
h

ξ= − − − + + − + +  

    where  0 0[ 2 , 2 ]x h x hξ ∈ − + . 
 

 
 
 

 
Numerical  Integration and  Differentiation Using Maple/MATLAB 

 
 

8.7 

 
Numerical  Integration and  Differentiation Using Maple 
 

(a)    The following Maple commands can be used to evaluate   ( )b
a

f x dx∫  numerically 
 

with(student[Calculus1]):  
ApproximateInt(f(x), x = a..b, method = simpson, partition=n) 

 

Notes:   By default, the interval (a,b) is divided into 10 subintervals and Simpson’s 1/3 rule is 
applied to each subinterval. To change the number of subintervals from 10 to a 
different number n, simple add in the optional argument “partition=n” where n is 
an integer number. 
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Example 1   Evaluate 
31

2
0

1

xe dx
x

−

+∫ . 

 

>with(Student[Calculus1]): 
>Intval := ApproximateInt(exp(-x^3)/(x^2+1),x=0..1,  
                          method=simpson,partition=12); 
>evalf(Intval);    

 

yields 
0.6649370529                          

 

Given , by writing the integral as an iterative integral   ( , )d b
c a

f x y dxdy∫ ∫

( )( , )d b
c a

f x y dx dy∫ ∫ , 

we can use the Maple function “ApproximateInt( )” to evaluate the integral. 
 

Example 2   Evaluate 
2 1

2 2

0 0
x y dx dy∫ ∫ . 

 

>with(Student[Calculus1]): 
>Intval := ApproximateInt(ApproximateInt(x^2*y^2,x=0..1),y=0..2); 
>evalf(Intval);    

 

yields 
 0.8888888889 

 
(b) The following Maple commands can be used to compute a numerical approximation of the 

ordinary derivative and partial derivative of an expression evaluated at a point. 
 

fdiff(f(x), x, x=a, proc) 
fdiff(f(x,y,…),[x,y,…],[x=a,y=b,…], proc) 

 

Example   Evaluate 
1

cos( )
x

d x
dx =

. 

 

> fdiff(cos(x),x=1); 
 

yields 
 −.8414709848 

 
Numerical  Integration Using MATLAB 

 

The MATLAB function  “trapz()” evaluates ( )b
a

f x dx∫  via the trapezoidal rule.  The syntax is 
 

>> trapz(x,f);   
 

where  f   defines the integrand   and  x  gives the integration points.    The  MATLAB function  

“dblquad()” can be used to evaluate   .    The syntax is ( , )d b
c a

f x y dxdy∫ ∫
 

  dblquad(@f(x,y), a, b, c, d) 



Ch 8  Numerical Integration and Differentiation    137 

 

Example 1  Evaluate  
0

sin x dx
π

∫  

>> x = 0:pi/100:pi; 
>> f = sin(x); 
>> trapz(x,f)  

   

 produces 
ans = 
      1.9998 

 

Example 2  Evaluate 
2 1

2 2

0 0
x y dx dy∫ ∫ . 

 

 To evaluate this integral, first create a function “integrnd()” containing the integrand. 
 

Function out = integrnd(x,y) 
out =x.^2+y.^2; 

 
 and enter the MATLAB statement    

 
>>result=dblquad(@integrnd, 0, 1, 0, 2) 

 

 which  produces 
 

result = 
           0.8889    

 
 

 
 

EXERCISE 8 
 

Q8.1 Use the composite Trapezoidal rule with the indicated number of intervals n to approximate the 
following definite integrals.       

 ( ) ; ( )a
dx
x

n b x x dx n
1

3
2

0

3

4 1∫ ∫= + 6=  

  (Ans: 1.1167;  10.3122) 
 

Q8.2 Repeat Q8.1 using the composite Simpson 1/3 rule.  (Ans: 1.100000; 10.20635). 
 

Q8.3 Use Romberg integration to calculate R3,3   and  R4,4 for the integrals in Q8.1. 

Q8.4 Use Gaussian quadrature with n = 2 and 3 to find approximations to  xdxe x sin
3

1
∫

  (Ans: 11.141495;  10.948403  
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Programming 
 
Q8.5 Write a well-structured Fortran/C++/Maple/Matlab function subprogram SIMPS which evaluates 

a definite integral using the Composite Simpson' 1/3 Rule. Then, write a main program to call 

the function to evaluate  using
 
h = 0.05, where f(x) is defined by f x dx( )

0

1

∫

       f x x x
e xx( )

sin
= − ≤ ≤

≤
⎧
⎨
⎩

2 1 0 0      .
    0.5 < x 1

5

 (Hint. see algorithm in Sec. 8. 2) 
 

Q8.6 Design an algorithm and then write a F95/C++/Maple/Matlab function subprogram TRAP to 
calculate a definite integral using the composite trapezoidal rule. Then write a main program to 
call the function to evaluate the definite integral given in question Q8.5 

 

Q8.7 Write a well-structured Fortran program ROMB which evaluates a definite integral using the 
Romberg integration scheme and print the Romberg integration table (n rows). Then, use the 

program to approximate dx
x∫

3

1

1  
using Romberg integration with n = 6.

 

Algorithm:    
INPUT    end points a, b, integer n. 

  OUTPUT  Ri,j  (j =1 to i,   i =1 to n) 
   

  Set  h = b – a,    
   [ ] 2/()(1,1 bfafhR +=

  For i = 2 to n do 

       [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−++= ∑
−

=

22

1
1,11,2 *)5.0(

2
1

i

k
hkafhRR   

          For j = 2 to i do 

   
14

4
1

1,11,2
1

,2
−

−
= −

−−
−

j
jj

j

j
RR

R  

      Output (  ) 2, 1 tojR j = i

      Set h = h/2 
        For j = 1 to i   
               Set  jj RR ,2,1 =

     End 
 

(Note:  The construction of a new line of the Romberg table only requires data in the immediate 
previous line. Thus, in the program, we use two one-dimensional arrays, one for storing 
the value of the current line R2,j  and the other for the immediate previous line R1,j.) 

 
Q8.8.    Solve Q8.1 and Q8.5 using Maple/Matlab built-in functions. 



139 

 
 
 
 

   
       Solution of Initial Value Problems for Ordinary 

Differential Equations  

CHAPTER 

9 

 
 

In modeling many real world problems, one needs to solve a differential equation or a set of 
differential equations subject to certain initial and boundary conditions. However, there are 
relatively few cases for which an analytical solution can be found. Numerical methods for the 
solution of differential equations are therefore extremely important.   
 
In this chapter, we will first describe several methods for generating numerical solutions of the 
first order initial value problem:  

                                
0

( ,  )

( ) .

dy f x y
dx
y a y

⎧⎪⎪ =⎪⎪⎨⎪⎪ =⎪⎪⎩

                                                                 (9.1) 

 

In other words, we derive several methods (Taylor series method, Runge-Kutta methods and 
predictor-corrector methods in sections 9.1-9.4) for generating numerical solutions ( ) 1

,  N
i i i

x y
=

 

starting from the initial point ( )0 0,  x y  , i.e., 
 

                                              
0 1 2

0 1 2  

                               ...            
    

              ...      
      

n

n

x x  x x
y y  y y→ → → →  

Then we analyze the stability of the numerical methods in section 9.5, and then we show how the 
methods for first order initial value problems can be adapted to solve systems of first order 
equations and higher order initial value problems in sections 9.6 and 9.7. Finally in section 9.8, we 
show how to solve initial value problems for ODEs using Maple and Matlab built-in functions. 
 

For convenience, various concepts/definitions, to be used throughout this chapter, are summarized 
below. 

 

Ordinary Differential Equation (ODE) 
 

ODE is an equation which relates one and only one independent variable with an unknown 
function and its derivatives. The order of an ordinary differential equation is the order of the 
highest derivative in the equation. 

 

Initial Conditions (ICs) 
 

ICs are the conditions that describe the unknown function or/and its derivatives at one and only 
one point. 
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Boundary Conditions (BCs) 
BCs are the conditions that describe the unknown function or/and its derivatives at more than one 
points. 

 
Initial Value Problem (IVP) 

An IVP consists of  a differential equation subject to certain imposed initial conditions. 
 
Boundary Value Problem (BVP) 

An BVP consists of a differential equation subject to certain imposed boundary conditions. 
 
Analytical Solution 

An analytical solution is a function y(x) satisfying the differential equation and the imposed initial 
conditions or boundary conditions. 

 
Numerical Solution 

If we wish to know the relation of y and x for [ ,  ]x a b∈ , we divide the interval [a, b] into N 
subintervals with nodes    a = x0,  x1, … ... ,  xn = b.  Then for each xi, we compute a corresponding 

yi approximating the exact solution y(xi). The sequence ( ) 0
,  N

i i i
x y

=
  is called the numerical 

solution to the differential equation. 
 
Numerical Method 

Numerical method refers to the method for generating  ( ) 0
,  N

i i i
x y

=
 from the differential equation 

and the initial condition  or the boundary condition  given. 
 
 

Existence  
 

If f(x, y) is defined and continuous on some bounded domain  D  of the  x-y plane, then for every 
(x0, y0) ∈  D there exists a solution y(x) for the initial value problem  

 

       0 0( ),     ( )y f x y x y′ = =
 

 on some interval containing x0 and the solution can be extended until (x, y(x)) approaches the 
boundary of D. 

 
Uniqueness  

 
If  f(x, y)  is defined and continuous on D,  and satisfies  the Lipschitz condition with respect to y 
in D  

       ( ,  ) ( ,  *) *f x y f x y L y y− < − ,   
 

where L is a constant, and if (x0, y0)  D, then there exists a unique solution to the initial value 
problem on some interval containing x

∈
0 and this solution can be extended uniquely until it  

approaches the boundary of  D. 
Note: The Lipschitz condition can be replaced by the weaker condition: f

x
∂
∂  continuous and 

bounded. 
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            Taylor Series Methods 
 
 

9.1 
 

The Taylor series methods are based on Taylor's series expansion theorem.  Suppose the solution  
y(x) to the IVP has (p +1) continuous derivatives. If we let 0nx x nh= + , then  

          
2 1

( ) ( 1)
1( ) ( ) ( ) ( )  ... ( ) ( ),

2! ! ( 1)!

p p
p

n n n n n
h h hy x y x hy x y x y x y

p p
ξ

+
+

+ ′ ′′= + + + + +
+

p

⎤⎦

          (9.2) 

where . By deleting the remainder term involving ξ, we obtain the Taylor series 
formula with the error equal to the term neglected, as below  

1,n nx xξ +⎡∈ ⎣

 

Talor Series Methods of order p:   
2

' "
1  ...

2! !

p
p

n n n n n
h hy y hy y y

p+ = + + + + ( )        (9.3) 

with truncation error in each step    
1

( 1)=
( 1)!

p
phE y

p
ξ

+
+

+
( )                                         (9.4) 

 

 Remark.  With (9.3), one can generate numerical solutions ( ) 0
,  N

i i i
x y

=
starting from the known 

initial value (x0, y0), and the error in each step of updating is as given in (9.4) 
 

Taylor Series Method of Order One (Euler's Method) 
 

For , from (9.3) and , we obtain Euler’s method with error as follows. 1p = y f′ =
 

Euler’s Method:                                                                   (9.5) 1 ( , )n n ny y hf x y+ = + n
 

  with error               
2

''( )
2

hE y ξ=  

   
 Remark.  In Euler’s method, δ  as shown in Figure 9.1 is approximated by y yΔ
 

    
y

 

   xn  xn+1

h

    yn

     yn+1 
 
 
 
  
 
 
  
 
 

                                       
                                              Figure 9.1 Diagram showing Euler’s method 

 x 

  Δy 
δy

 y(xn+1) 
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Taylor Series Method of Order Two (p >2)  

 
For , from (9.3)  and 2p =
 

                                  y' = f(x, y),     y'' = f ' (x, y) , 
we obtain 

 

                                            1 ( ,  ) ( ,  ) ( ,  )
2!n n n n n n n n n
hy y h f x y f x y y hT x y+

⎛ ⎞⎟⎜ ′= + + = +⎟⎜ ⎟⎟⎜⎝ ⎠
                 (9.6) 

               with error       
3

(3) ( )
6
hE y ξ= . 

Exercise.   Solve 
[ ]1     0,  1

(0) 1
y y x x
y

⎧ ′⎪ =− + + ∈⎪⎨⎪ =⎪⎩
 

 
Truncation Error in Taylor Series Methods 
 

The difference between y x  yn( )+1   and n+1
y
 results from truncating the Taylor series to a finite 

number of terms.   To calculate y , we need (n+1) steps. We define n+1  ofrom   
 

Local Truncation Error:    Error in each step. 
 

Global Truncation Error:  Total error accumulated from step 1 to the current  (n+1)th step. 
 

For Taylor series method of order p, the local truncation error in calculating y(x+ h) from y(x) is 

    
1

( 1) ( ),   [ , ]
( 1)!

p
ph y x

p
ξ ξ

+
+ ∈

+
x+h .                                                  (9.7) 

Thus, Local truncation error is of order denoted by   That is, the local truncation 
error → Mh

1,ph + 1O( ).ph +

P+1 as h→ 0. 
 
Global truncation error (accumulated from steps 1 to n) is approximately  

 

1 ( 1) ( 1)1 ( ) ( )   for [a,b],
( 1)! ( 1)!

p p p pb an h y h y
p p

ξ ξ+ + +−
= ∈

+ +
ξ  

 

that is of order h hp p, )  O( .  For Euler's method,  p =1 and thus the global truncation error is of 
order h. 

 
Problems with Taylor Series Methods 
 

Taylor series methods involve calculation of derivatives of the function.  Thus, users must do 
some preliminary analytical work before writing a computer program specifically for the task. 
Ideally, we require a method solely based on function evaluations. The Runge-Kutta method to be 
presented  in the next section is one of this type of methods. 
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            Runge-Kutta Methods 
 
 

9.2 

 

The Runge-Kutta method is also based on Taylor’s series expansion theorem.  Given an initial 
value problem 

  
0

( ,  )         [  ]

( )

dy f x y x a, b
dx
y a y

⎧⎪⎪ = ∈⎪⎪⎨⎪⎪ =⎪⎪⎩

 

 

Suppose that the solution y(x) has (p +1) continuous derivatives, then we have the Taylor Series 
Expansion  

 
2

( ) ( ) ( ) ( )  ... .. ( ,  ) ( ,  ) .....
2! 2
h hy x h y x hy x y x y(x) h f x y f x y

dx
d⎡ ⎤

′ ′′ ⎢ ⎥+ = + + + = + + +
⎢ ⎥⎣ ⎦

           (9.8) 

                                                                        = + , ( ) ( ,  ,  )y x h x y hΔ
where ( ,  ,  )x y hΔ contains derivatives of f(x, y), and thus is inconvenient to use the above 
formulae.  

 
The Idea Behind the Runge-Kutta Method 
 

To avoid derivative calculation, the Runge-Kutta method constructs a ( ,  ,  )x y hφ  which agrees 
with ( ,  ,  )x y hΔ  as far as possible (agrees up to the h p –1 term) but does not contain derivatives, 
and replace ( ,  ,  )x y hΔ by ( ,  ,  )x y hφ  to form an one step formula (as below) for generating 
numerical solutions step by step. 

 

1 ( ,  ,  )n n n ny y h x yφ+ = + h .                                              (9.9) 
 

Definition  (order p one-step methods):  An one step method is said to be of order p if ( ,  ,  )x y hφ  
agree with ( ,  ,  )x y hΔ  up to the  hp-1 term  (that is yn+1 agrees with the Taylor series 
up to the hp  term ) 

 

Method for Deriving φ( , , )x y h  for Runge-Kutta Method of Order p 
 

(1)    Let ( ,  ,  )x y hφ   be the weighted average of the slope of the curve y = y(x) in the interval      
[x,   x+h].  For example, for p = 2, choose ( ,  ,  )x y hφ  as in (9.10) with several constants to be 
determined. 

(2)    Express both  ( ,  ,  )x y hφ and ( ,  ,  )x y hΔ as polynomials of h. 
(3)   Determine the constants in ( ,  ,  )x y hφ  such that  φ and Δ agree up to and including the term 

in h p-1 . 
 
Derivation of Runge-Kutta Order Two Methods 

 
Let    be the weighted average of the slope of the curve y = y(x) at two points x and  

 in the interval [x, x+h], i.e. 
φ

1 1(0 1)x p h p+ < ≤
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                           1 2( ,  ,  ) ( ) ( 1 )x y h a y x a y x p hφ ′ ′= + +   
                                            [ ]1 2 1 2( ,  ) ,  ( ,  )a f x y a f x p h y+ p hf x y= + +                             (9.10) 
 

where in the above, we approximate the y value at 1x p h+  by   
 

   . 1 2 2'( ) ( , ) ( )( )y p h y x hf x y p py pβ β+ == + ∵ 1
 

Denoting  as  x
f f
x

∂
∂

 and  as  y
f f
y

∂
∂

, and using Taylor series in two variables, we have  

 

                        
2

1 2 1 2

2
1 2 2 1 2

( ,  ,  ) ( ,  ) ( ,  ) ( )

                ( ) ( ) ( ).

x y

x y

x y h a f x y a f x y p hf p hff O h

a a f ha p f p ff O h

φ ⎡ ⎤= + + + +⎢ ⎥⎣ ⎦
= + + + +

                      
(9.11) 

On the other hand 
 

                     
2

( ,  ,  ) ( ,  ) ( ,  )  ... [ '] ...
2 2

                                                                   ( )
2

x y

x y

h d hx y h f x y f x y f f f y
dx

hf f ff O h

Δ = + + = + + +

⎡ ⎤= + + +⎢ ⎥⎣ ⎦

               
(9.12)

 

Matching φ and Δ for the terms with h0 and h1 yields 
 

 
1 2 1
2 1 2
2 2

1 2

1 1
1/ 2                                          0.  
1/ 2 1

2

a a a
a p a
a p p p

α
α α

α

⎧⎪⎪⎪⎧ + = = −⎪ ⎪⎪ ⎪⎪ ⎪= ⇒ = ≠⎨ ⎨⎪ ⎪=⎪ ⎪⎪⎩ ⎪ = =⎪⎪⎪⎩

 

 
Hence the Runge-Kutta order two methods have the form 
 

1 1( ) ( ) (1 ) ( , ) , ( , )
2 2

( )( )y x h y x h f x y f x h y hf x yα α
α α

+ = + − + + + .                (9.13)     

    
As α is arbitrary there is an infinite family of R-K schemes each of which is O(h2).  The following 
are two of the order two schemes, namely improved Euler’s method and modified Euler method. 

 
Improved Euler's Method (a =1/2) 
 

                 ( )1
1 ( ,  ) ,  ( ,  )
2n n n n n n n ny y h f x y f x h y + hf x y+

⎡ ⎤= + + +⎢ ⎥⎣ ⎦           (9.14) 
                      

Modified Euler's Method (α =1) 
         

            1 ,  ( ,  )
2 2n n n n n n
h hy y hf x y + f x y+

⎡ ⎤
⎢= + +
⎢⎣ ⎦

⎥
⎥
                             (9.15) 
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Remark  (graphic interpretation of the improved Euler method) 
 

  As shown in figure 9.2, in the improved Euler method, the average slope of the curve 
y=y(x) is approximated by the average of the slopes at the left end and the right end of 
the interval   1( , )n nx x +

                                        ( )1 1' ( ' ' ) [ ( , ) , ( , ) ,
2 2A B n n n n n ny y y f x y f x h y hf x y= + = + + +  

  and the increment of function   is approximated by ∆y = hyδ y′ . 
  

  
  
         

 

xn+1xn

A

∆y

y

x 

B

yn+1

yn
δy 

 
 
 
 
 
 

           

   Figure 9.2 graphic interpretation of the improved Euler method 
 

Fourth-Order Runge -Kutta Method 
      

None of the second order Runge-Kutta methods are widely used since the error is only O(h2) 
globally. One algorithm in common use for the initial value problems is the R-K method of order 
four, which is as follows. 

 

Fourth order Runge-Kutta Method 
 

           

( )

1

2 1

3 2

4 3

1 1 2 3

( , ),
1 1( , ),
2 2
1 1( , ),
2 2

( , )
1 2 2
6

n n

n n

n n

n n

n n

k hf x y

k hf x h y k

k hf x h y k

k hf x h y k

y y k k k k+

=

= + +

= + +

= + +

= + + + + 4

                      (9.16) 

Remark:  1)  From Taylor series, 
2 3

' '' ''' 4( ) ( )  ( )
2! 3! 4!n n n n n n
h h hy x h y x h f f f f O h

⎡ ⎤
⎢ ⎥+ = + + + + +  . ⎢ ⎥
⎢ ⎥⎣ ⎦

The Runge-Kutta method (4th order) agrees with the above series to the third order 
derivative term and thus  

local truncation error is in the order of h5, O( h5); 
global truncation error is in the order of h4, O( h4). 

2) Problems arise when the relevant Taylor series is very slowly convergent. 
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Error Estimation 
 

The truncation errors given for the above methods only give us the order of magnitude of the 
errors since they are given in terms of a derivative at an unknown point ξ.  

For 4th order R-K method, local truncation error = 1
5

5 5
!

( )( )y hξ ; 

    global truncation error = Kh4
. 

 
If we assume that the 5th order derivative is fairly constant, we can estimate this error as detailed 
below. 
 

Let  y(x) be exact value, yh(x) and y2h(x) be approximations of y(x) obtained by the Runge-Kutta 
order four method with step size h and 2h respectively. 
Then                                                                                                                                                 (9.17) 4( ) ( ) ,hy x y x Kh= +

                                                                                                                                                            
4

2 ( ) ( ) (2 ) .hy x y x K h= +

From the above, we have       4 2
15

h hy y
Kh

−
= .                                                                        (9.18) 

Therefore,  the approximate error for the 4th order Runge-Kutta method using size h is 
 

  2 ( ) ( )
( ) ( ) ( )

15
h h

h
y x y x

E x y x y x  
−

= − = .                                                (9.19) 

This method of error estimation is called Richardson extrapolation. 
 

Example 9.1 Given an I. V. P.   ,        (0) 1y x y y′ = + =
1) Estimate y(0. 2) using the Runge-Kutta (order 4) method with h = 0.1 and h = 0.2 
2) Estimate the error in the approximation to y(0. 2) with h = 0.1 

 
Solution   1) Using h = 0.1 
 

      n = 0,    x0 = 0,     y0 =1 
      k1 = hf (x0 , y0 )= 0.1(0 +1) = 0.1000 

      k2 = hf (x0 + h/2,  y0 +
1
2

k1 )= 0.1(0+0.05 + 1+0.05) = 0.1100 

        k3 =  
      k4 = 

          y∴ 1 = y0+
1
6

(k1+2k2+ 2k3+ k4) =1.11034 

n = 1,    x1 = 0.1,     y1 =1.11034 
      k1= ---,    k2= ---,    k3= ---,    k4= ---, y2= --- := y0.1(0.2)  

 

 2) Using h = 0.2 
 

n = 0,   x0 = 0, y0 =1 
     k1 =  0.2(0+1) = 0.20 
     k2 = 0.2(0.1 + 1.1) = 0.24 
     k3 = … 
     k4 = … 
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   y∴ 1= 1y = 1+ 1
6

(k1+2k2+ 2k3+ k4) =1.242803:= y0.2(0.2) 

        Error = 70.2 0.1(0.2) (0.2)
2 10

15
y y −−

≈− × . 

 
 

            Multistep Methods 
 
 

9.3 

The methods covered so far for solving initial value problem ,  are one 
step methods. 

0( ),     ( )y f x y x y′ = 0=

n wh

p−

 

Definition  (One Step Methods):  Methods of the form ich use information 
from the immediate last step to advance solution to next step are called one step 
methods. 

1 ( ,  )n ny g x y+ =

 

Taylor series method, Euler method and Runge-Kutta methods are all one step 
methods. 

 
Definition  (Multistep Methods):   

Methods of the form  which take 

account of previous information at 
1 1 1( ,  ;  ,  ;..........,;  ,  )n n n n n n p ny g x y x y x y+ − − −=

1,  ,..........,  n n n px x − −x  to find  is called 
multistep methods. 

1ny +

 

Derivation of Multistep Formulae 

Consider                                       ( ,  )dy f x y
dx

= .                      (9.20) 
 

Integrating the above equation from xn-p to xn+1 yields 
 

                                                                    (9.21) 
1

1 ( ,  )       0.
xn

n n p

xn p

y y f x y dx p
+

+ −

−

= + ≥∫
 

From Newton’s backward interpolation formula, we have  
 

                (9.22) ( ) ( ) ( ) ( ) ( )1 11

0

( ,  ) Error 1 1
1

m
k m mk m

m n
k

s s
f x y P s f h f

k m
ξ+ ++

=

⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟= + = − ∇ + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ +⎝ ⎠ ⎝ ⎠∑
 

where  Pm is the mth degree interpolating polynomial and                                                                 
 

                                       ( ) 1,   , n n mx x sh x x xξ − +n⎡ ⎤= + ∈ ⎣ ⎦ .                                                       (9.23) 
 

Approximating f(x, y) by Pm(s), we obtain from (9.21) 

  
1

1 ( ) ,n n p m

p

y y h P s d+ −

−

= + ∫ s                                                             (9.24) 

with error   
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( ) ( ) ( )
1

1 1E 1
1

m m

p

s
h f

m
ξ+ +

−

⎛ ⎞− ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠∫ ds

2

.                                              (9.25) 

 

In the following we derive a selection of formulae using different values of p and m. 
 

Adams-Bashforth Formulae (p = 0) 
 

Here consider m=3. From (9.22), we can construct a 3rd degree interpolating polynomial P3(s) to 
approximate f(x, y) and estimate the interpolating error from information at 1,  ,n n nx x x− − ,  and 

from which and (9.25), we obtain 3 ,nx −

( ) ( )( )1
2 3

1

0

1 1 2
2 3!

( )n n n n n n
s s s s s

y y f s f f f h+
+ + +

= + + ∇ + ∇ + ∇∫ ds  

21 5 3
2 12 8n n n n

3
ny f f f= + + ∇ + ∇ + ∇ f

1 2

 .                                                  (9.26)                                    
 

The following difference table can be used to assist in the calculation of the backward finite 
differences 
 

3 3 3
2 2 3

2
2 2 2 1 1 2

2 23
11 1 2

2
1 1 1 2

1

n n n
n n n

n n n n n n

n nn n n n

n n n n n n
n n n

n n n

x y f
f f f

x y f f f f
f ff f f f

x y f f f f
f f f

x y f

− − −

− − −

− − − − − −

−− − −

− − − −

−

∇ = −
∇ =∇ −∇

∇ −∇∇ = − ∇ =
∇ =∇ −∇

∇ = −

 

 

from which 
                                    2

1 1 2[ ] [ ] 2n n n n n n n n n nf f f f f f f f f f− − − −∇ =∇ −∇ = − − − = − + −

3n

 
 

                                     3 2 2
1 1 23 3n n n n n nf f f f f f f− − −∇ =∇ −∇ = − + − −  

 

Substituting the above differences into (9.26) yields 
 

         ( ) ( ) ( )1 1 1 2 1
1 5 32 3 3
2 12 8n n n n n n n n n n n ny y f f f f f f f f f f+ − − − −= + + − + − + + − + −2 3− −  

                  ( )1 255 59 37 9
24n n n n
hy f f f f− −= + − + − 3n−  

 

The error in the numerical approximation is 
 

                  
( )( )( ) ( )

1
44

0

1 2 3
( )

4!
s s s s

E h f hdsξ
+ + +

= ∫     

( ) ( )( )( ) ( )
1

4 45 5
1 1

0

1 2( ) 1 2 3 ( )
24 720

h f s s s s ds h fξ ξ= + + + =∫
51

1

 

where  ( )1 3,  n nx xξ − +∈
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In Summary Adams-Bashforth formulae with error is as follows 
 

Adams-Bashforth Formulae:      ( )1 155 59 37 9
24n n n n n n
hy y f f f f+ −= + − + −2 3− −  

with error                                     ( ) ( )55
3 1

251 ,          ,  
720 n nE h y x xξ ξ − +⎡ ⎤= ∈ ⎣ ⎦ . 

 
Midpoint formulae  (p = 1, m = 1) (Comparable to Euler) 

  ( )
3

1 1 2  ,    with error    
3n n n
hy y hf E y ξ+ − ′′′= + = . 

 

Milne’s formulae (p = 3, m = 3) 

  ( ) ( )55
1 3 1 2

4 1(2  2  ),     with error  
3 4n n n n n
hy y f f f E h y ξ+ − − −= + − + =

4
5

. 
 

It can be shown that all formulae of type (9.21) with m = p have the property that the coefficient of 
the mth difference ( ) vanishes, and thus the formulae is of higher order than might be 
expected. 

n
m f∇

 

Advantages of Multi-step Methods 
 

Require only one function evaluation per step. Compared to (say) Runge-Kutta order 4 (4 function 
evaluations), the method is considerably faster and less computational work. 

 

Disadvantages of Multi-step Methods 
 

– not self-starting 
– Although A-B’s discretization error is O(h5), the coefficient in the error term is somewhat 

larger than Runge-Kutta type of the same order. Runge-Kutta methods are generally 
(although not always) more accurate for this reason. 

 
 

            Predictor-Corrector Methods 
 
9.4 

                         ( ) ( ) 0p        , ,                       ,
1

1 ≥+=⇒= ∫
+

−

−+ dxyxfyyyxf
dx
dy n

pn

x

x
pnn  

Corrector  
 

If we approximate the integral on the right hand side by fitting an interpolating polynomial based 
on xn+1, xn and backwards, we can get an implicit formula for yn+1. For example, taking p = 0 and 
using the Trapezoidal rule, we have   

 1 1 1( ,  ) ( ,  )
2n n n n n n
hy y f x y f x y+ + +⎡ ⎤= + +⎣ ⎦ , with error ( )

3
E  

12
h y ξ′′′=                  (9.27) 

 This error is smaller than that of Euler’s method ( )
2

 
2
h y ξ′′ . Unfortunately, this equation in 

general is not immediately useful because we can not evaluate f(xn+1, yn+1) until yn+1 is known. 
Thus we need a predictor for yn+1. 

 



150 

Predictor 
 

If we approximate the integral on the right hand side by fitting an interpolating polynomial based 
on xn, xn–1 and backwards, we can get an explicit formula for yn+1. For example, taking p = 1 and 
using the Midpoint rule for the integral, we have  

       ( )
3

1 1 2  ,      with error    y
3n n n
hy y hf E ξ+ − ′′′= + =                                (9.28) 

 

Predictor-Corrector Method 
 

1)  Use the explicit (predictor) formula (eg. equation (9.28)) to predict the value of y(xn+1), i.e.,  
yp

n+1; 
 

2)  Use the implicit (corrector) formula (eg. equation (9.27)) to check or to correct the predicted 
value  of  y(xn+1), i.e.,  yc

n+1; 
 

3)  Repeat the above process for a new value of x. 
  

Adams-Moulton Multistep Predictor-Corrector Method  
 

Take  p = 0, then  ( )dxyxfyy
n

n

x

x
nn ∫

+

+=+

1

 ,1

 

Predictor:    Approximating f(x, y) by using Newton-Gregory backward interpolating polynomial 
based on 4 points xn, xn – 1, xn –2, xn – 3 , we obtain the  Adams-Bashforth formula (see 
section 9.3) as predictor: 

                 ( )1 21
55 59 37 9

24
p

n n n nn

hy y f f f f− − −+
= + − + − 3n  .      

                       

Corrector:  To derive a correct formula, approximate f(x, y) by Newton-Gregory backward 
interpolating polynomial based on 4 points xn+1, xn , xn – 1, xn –2 , 

  

( ) ( ) ( ) ( )( )
1

3
1

2
113 !3

21
!2
1

++++ ∇
++

+∇
+

+∇+=≈ nnnn fsssfssfsfsPxf ,  

where x = xn+1+sh. 

Thus,                   ( ) ( )
01

1 3

1

, 
xn

n n n

xn

y y f x y dx y h P s
+

+

−

= + = +∫ ∫ ds

                                        ( )1 11 9 19 5
24

c
n n n n nn

hy y f f f f+ −+
= + + − + 2−  .   

                              

Remark: 1) The above process can be called PEC process (P: predictor, E: estimate function 
value  f(xn+1, yp

n+1), C: Corrector for finding ; 1
c
ny +

 

2) Having obtained a corrected estimate yc
n+1 of y(xn+1), it is sensible to use it to      

improve the estimate of y(xn+1) before proceeding to the next step.  Thus, one could  
use the PEC process: yp

n+1 → f(xn+1, yp
n+1) →  yc

n+1 → f(xn+1, yc
n+1).  The corrector 

can also be used repeatedly to improve the estimate of y(xn+1), i.e., use P(EC)mE 
process. 
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Convergence Criteria for Predictor-Corrector Method 
 

Example 9.2   Suppose the corrector is 1 1( ,  ) ( ,  )
2n n n n n n
hy y f x y f x y+ + 1+
⎡ ⎤= + +⎣ ⎦ . 

Obviously, the corrector step is an iteration of the form ( ) ( )( )1 ,   1,  2,...k k
n ny F y k−= =  for finding 

the solution yn+1 to the above equation. We hope that the sequence generated will converge to the 
root, namely 

( ) ( ) ( ) ( ) ( )0 1 2
1 1 1 1,  , ,..........p

n n n ny y y y Y F Y+ + + += → = . 
  

The usual condition for convergence of a fixed-point iteration process applies, namely  
 

                                             ( ) 1F y′ <   
 

on the interval containing the root.   Thus, for the above example, we have  
 

( )1 1 1 1( ,  )      ( ,  )  
2 2n n n n
h hy C f x y F Y f x Y C+ + + += + ⇒ = +  

Hence, the condition for convergence is  
 

      
2
h 1f

y
∂

<
∂

. 

 

The above implies that it may be possible to adjust h in a non-convergent situation to produce 
convergence. 

 

 

Discretization Error  
 

We need to estimate truncation error at each step to reduce number of iterations of the corrector. 

Example 9.3   ( )
3

1 -1P:         2  ,                with error  
3n n n pm
hy y hf E y ξ+ ′′′= + = 1        – Midpoint rule 

               ( ) ( )
3

1 1C:         ,    with error  
2 1n n n n Trap
h hy y y y E y ξ+ +′ ′ ′′′= + + = − 22

  – Trapezoidal Rule 
   

Let  be the value of y1
p
ny + n+1obtained from the predictor and be the value of y1

c
ny + n obtained from 

the corrector, then. 

                                  
( ) ( )

( ) ( )

3

1 11

3

1 1

3

12

p
n n

c
n n

hy x y y

hy x y y

ξ

ξ

+ +

+ +

⎧⎪⎪ ′′′= +⎪⎪⎪⎨⎪⎪⎪ ′′′= −⎪⎪⎩
2

              

 

Assuming that the 3rd order derivative of y(x) is firstly constant, then 

   ( ) ( ) (
3

1 1 1 1 1
1

12 5
pc

n n n n n
hD Error y x y y y yξ+ + + + +′′′= = − =− =− − )c                      (9.29) 

   
  (some tolerance) then proceed to next integration step,

   if 
   then halve step size, recompute starting value and restart.

D
ε
ε

⎧<⎪⎪∴ =⎨⎪≥⎪⎩
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             Stability of Numerical Methods 
 
 

9.5 
 

Inherent instability 

Consider                      
10 11 0

          
(0) 1,    y (0) 1

xy y y
y e

y
−⎧ ′′ ′− − =⎪⎪ ⇒ =⎨⎪ ′= =−⎪⎩

                                              (9.30) 

 

Suppose that there is a slight change in initial condition, i.e.  y(0) = 1+ε,   y /(0) = –1, the solution 
becomes  

1111(1 )
12 12

x xy e ε
ε −= + + e  

 

Obviously, for large x, a small change ε in initial condition will cause a large change in y. This 
kind of problems is called inherent instability. 

 
Numerical Instability 
 

 

Example 9.4     Consider    y' = –3y,  y(0) =1   (stable problem).    
     

Solution    
The exact solution  is                        y e x= −3  
Using the midpoint rule                                                                (9.31) 1 1 2 ,n ny y hf+ −= + n

we obtain the following numerical result                      
 

xn    0 0.1 0.2 0.3 1.0   1.0   1.2     1.3     1.4 
yn   1 0.7408 0.5555 0.4075 0.0816 –0.0013   0.0824   –0.0507    0.1128 

 

Remark: Growing oscillations show instability in the method and the Phenomenon exhibited here 
is known as numerical instability.  

 
Definition: Numerical Instability 

 

If a small perturbation on the starting values yi (0 < i < p) causes a large change in yi (p < i < N) 
obtained by a numerical method, then the numerical method is unstable. This kind of problems 
is called numerical instability. 

 
Cause of Numerical Instability 
 

To understand the numerical instability, let us examine the difference equation (9.31) more 
closely. For the example being considered f yn n= −3 , and hence from the midpoint rule 

 

        y y hf y h yn n n n n+ − −= + = + −1 1 12 2 3( )  

0+ − =

 

1 1
2

1

        6 0  

        (E 6 E 1) 0,  
n n n

n

y hy y

h y
+ −

−

⇒ + − =

⇒ + − =
 

 

1where  E n ny y +=  which is a 2nd order difference equation. The characteristic equation is   

      λ λ , 2 6 1h
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from  which           2 2 39 1=-3 1 9 -3 1 ( ) ,     < ,      
2 3

h h h h O h hλ
⎛ ⎞⎟⎜± + = ± + + ⎟⎜ ⎟⎟⎜⎝ ⎠

 

where we have used the formulae    
1 212

2(1 ) 1 ( )x x O x± = ± +   for 1x ≤  . 
 

Thus                        2 2
1 21 3 ( ),    (1 3 ) ( ).h O h h O hλ λ= − + =− + +

Therefore,             . 1 1 2 2
n n

ny C Cλ λ= +
 

As xn= nh  is fixed, 

   [ ] [ ]/ 1/( 3 ).(
1 (1 3 ) 1 ( 3 ) 1 ( 3 ) . x h h xn n n nh h hλ − −= − = + − = + − 3 )

 

Further,  as            lim ( ) /

ε

εε
→

+ =
0

11 e , 

 

we have                 3 3
1 20 0

lim   and   lim ( 1)x xn nn n
h h

e eλ λ−

→ →
= = n− . 

 

Therefore,             3 3
1 2 ( 1) .n nx xn

ny C e C e−= + −                     (9.32) 
 

The first term 3 nxe−  is a true solution. The 2nd term 3( 1) nxn e−  is an extraneous term due to the 
fact that a 1st order differential equation is approximated by a second order difference equation.  

 
Imposing the initial condition will, if all arithmetic operations are exact, result in choosing C2 = 0 
so that the correct solution will be selected from (9.32). In practice, however, some errors will be 
introduced, primarily due to round off or to inexact starting values and hence C2 will not be 
exactly zero. A small error will therefore be introduced at each step of the integration, and thus 
error will subsequently be magnified exponentially. As the major part of the solution decreases 
exponentially, the error will eventually dominate the solution. 

 
Loosely speaking, we can say that a method is unstable if errors introduced into the calculations 
grow at an exponential rate as the computation proceeds. 

 
One-step methods like Runge-Kutta type do not exhibit any numerical instability for h sufficiently 
small. Multistep methods may, in some cases, be unstable for all values of h and in other cases for 
a range of values of h. 

 
Method for Analyzing the Stability of Multistep Methods 
 

If the multistep method leads to a difference equations of order k, find the roots of the 
characteristic equation corresponding to the homogeneous difference equation. Denoting these 
roots as βi i ( = 1,  ...  )k , then the general solution is 

     y C C Cn
n n

k k
n= + +1 1 2 2β β  ...   + β  

 

One of these solutions, say , will tend to the exact solution of the differential equation as 
. All the other solutions are extraneous. Obviously, if 

β1
n

h → 0 1iβ <   (i = 2, 3, ... , k) then any 
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errors introduced into the computation will decay as n increases. Whereas if any of the extraneous 
1iβ >  , the errors will grow exponentially. 

 

Definiton: Strongly Stable 
  

A multistep method is defined to be strongly stable if the extraneous roots satisfy as h  the 
conditions 

→ 0

                                       1iβ <   (i = 2, 3, …., k). 
 

For the general differential equation y' = f(x, y), it will be difficult to obtain the roots βi of the 
characteristic equation. However, as  y' = f(x, y) can be expanded in the neighborhood of x = xn  as 
 

   ( ) ( ,  ) ( ) ( )  ...  n n n n
f fy x f x y x x y y y x C
x y

∂ ∂
λ μ

∂ ∂
′ = + − + − + = + + , 

 

we usually test for stability of a numerical technique on y' = λy  to give an indication of the 
stability of a method. 

 

Example 9.5   For Milne's method    y y
h

f f fn n n n n+ − + −= + + +1 1 13
4( )1 .     

If we set f = λ y, then 
              

 ( ) ( ) ,1 4 1 01 1− − − + =+ −γ γ γ γ λy y y hn n n     where = / 3. 
 

The associated Characteristic equation is      
 

                                      2(1 ) 4 (1 ) 0,γ β γβ γ− − − + =
which yields 

                         21 2 1 3
1

β γ
γ

γ⎡ ⎤= ± +⎢ ⎥
− ⎣ ⎦

. 

 

From the Taylor series, we have 
 

12 22

2

(1 3 ) : ( ) (0) '(0) ( )

                                = 1+ ( ),

f f f O

O

γ γ γ

γ

+ = = + + γ

))

 

 

1 2

2 2
0

2

(1 ) : ( ) (0) '(0) ( )

                            = 1+ [(1 ) ] + ( )

                            = 1+ + ( ),

g g g O

O

O
γ

γ γ γ γ

γ γ γ

γ γ

−

−
=

− = = + +

−  

 

and thus                
( )(
( )

2 2

2

1 ( ) 2 1 (

  2 (1 ) ( ) . 

( )O O

O

β γ γ γ γ

γ γ γ

= + + ± +

= ± + +

Therefore on using 
3
hλ

γ = , we have 

    2 2
1 21 ( ),      (1 ) ( )

3
hh O h O hλ

β λ β= + + =− − + . 
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Hence, the general solution is 

                                2 2
1 21 ( ) ( 1) 1 (

3

nn n
n

hy C h O h C O hλ
λ )

⎡ ⎤⎡ ⎤ ⎢ ⎥= + + + − − +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
 

3
1 20

lim ( 1)
xnx nn

nh
y C e C e

λ
λ

−

→
= + − , 

where xn=nh. 
 

The extraneous term is  and thus stability depends on the sign of λ. If λ>0, the 
desired solution will increase exponentially, while the extraneous term decreases exponentially. 
Thus Milne's method in this case will be stable. On the other hand if λ<0, the method is unstable. 

/ 3
2 ( 1) nxnC e λ−−

 
Definition: Weakly Stable   

 

Methods whose stability depends on the sign of λ for the test equation  y' = λy is said to be weakly 
stable.  
 

For the more general equation y' = f(x, y), we can expect weak stability from Milne's method 
whenever ∂ ∂f y/ < 0 on the interval of integration. 

Eg.   y' = –3y  by Milne's method is unstable since
    

∂
∂
f
y

= − <3 0.
 

 

Interval of Absolutely Stable 
 

In practice, all multistep methods will exhibit some instability for some range of values of the step 
size h. As described before, the roots of the characteristic equation are 
 

      1 2( ),  ( ),  ... ,  ( ). nh h hβ λ β λ β λ
 

These roots depend on λh. If for certain interval of λh, ( ) 1i hβ λ <  (i = 2, 3, …., k), then the error 
due to the extraneous terms tends to zero. 

 
Definition- Interval of Absolute Stability   

 

All the values of λh for which all the roots of the characteristic equation are less than one in 
magnitude. 

 
Relatively Stable 
 

For equations of the form y' = λy where λ >0. The solution of the difference equation associated 
with a multistep method is 

                                             y C C Cn
n n

k k
n= + +1 1 2 2β β  ...   + β  

One of the term (say C ) will be growing exponentially.  If all the other terms grow slower than 

the C  term, the method still can be stable. 

n
1 1β

n
1 1β

 
Definition: (Relatively stable Method)  

 

A method which has the property that all extraneous roots of the characteristic equation are less 
than the principal root in magnitude is said to be relatively stable. 
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            Systems of First Order Initial Value Problems 
 
 

9.6 

In this section, we describe how the methods in sections 9.1-9.4 for solving a 1st order initial value 
problem can be adapted to solve a system of first order equations        

 

  

1 11 1 1 2

2 22 2 1 2

1 1 2

( )( ,  ,  ,  ... ,  )
( )( ,  ,  ,  ... ,  )

          subject to    
  

( )( ,  ,  ,  ... ,  )

m

m

m mm m

y a Cy f x y y y
y a Cy f x y y y

y a Cy f x y y y

⎧ ⎧′ =⎪ = ⎪⎪ ⎪⎪ ⎪⎪ ⎪′ ==⎪ ⎪⎪ ⎪⎨ ⎨⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪′ ==⎪ ⎪⎪⎩⎪⎩

##

 

which can be written in vector form 

                                 
(x,  )

( ) .

⎧ ′⎪ =⎪⎨⎪ =⎪⎩

y f y
y a C

Numerical Solutions 
 

Any of the numerical methods described in section 9.1-9.4 can be adapted to solve the above 
system.  For example to solve the folowing system using  Runge-Kutta method (order 4) 

  

                                         0 0

0 0

( )( ,  ,  )
                    subject  to  

( )( ,  ,  )
y x yy f x y z
z x zz g x y z

⎧ ⎧′ =⎪ = ⎪⎪ ⎪⎨ ⎨⎪ ⎪′ ==⎪ ⎪⎩⎩
 

we first divide the interval [a, b] into N subintervals with nodes a = x0, x1, ... ,  xN= b.  Then for 

each xi, we compute           approximating   ( )
       approximating   ( )

i i
i i

y y x
z z x

⎧ →⎪⎪⎨⎪
  using  

→⎪⎩
 

                          

( )

1 1

2 1 1 2 1

3 2 2 3

4 3 3

1 1 2 3 4

( ,  ,  ), ( ,  ,  ),
1 1 1 1( ,  ,  ), ( ,  ,  

2 2 2 2 2 2
1 1 1    ( ,  ,  ), ( ,  

2 2 2 2
( ,  ,  ),

1 2 2 ,
6

n n n n n n

n n n n n n

n n n n n

n n n

n n

k hf x y z l hg x y z
h hk hf x y k z l l hg x y k z l

h hk hf x y k z l l hg x y

k hf x h y k z l

y y k k k k+

= =

= + + + = + + +

= + + + = + +

= + + +

= + + + +

1),

( )

2 2

4 3

1 1 2 3 4

1,  ),
2 2

( ,  ,  )
1 2 2 .
6

n

n n n

n n

k z l

l hg x h y k z l

z z l l l l+

+

= + + +

= + + + +

3

 

 
 

            Higher Order Initial Value Problems 
 
       

9.7 

The general form of the  mth  order initial value problems is   
 

                       
( ) ( 1)

( 1)
1 2

( ,  ,  ,  ... , )

( )= ,   ( ) ,  ... , ( ) .

m m

m
m

y f x y y y

y a C y a C y a C

−

−

⎧⎪ ′=⎪⎪⎨⎪
 

′ = =⎪⎪⎩
 

To solve the above problem, we convert the problem into a system of differential equations and 
then solve as so, as detailed below. 
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Let . 1 2 1 3 2 1,     ,     ,   ... ,  ( )m my y y y y y y y x−′ ′ ′= = = =
 

Then  
                 (3) ( 1) ( )( 1)

1 1 2 12 1( 2)( ) ( )  ... = ( )m mm
m m m m m m my y y y y y y y− −

− − − − − −′ ′ ′ ′′ ′ ′′ ′= = = = = = = = f

⎪ ⎪′⎪ ⎪=⎪ ⎪ =⎪ ⎪⎪⎩⎪ ′ =⎪⎪⎩

#
#

′= =⎪⎪⎩

z

n

n

z
y

 
 

and hence the problem becomes  
 

                                   ⎪⎪ ⎪⎨ ⎨⎪ ⎪
 

1 2
1 1

2 3
2 2

1

1 2

( )
( )

        subject to     
 

( )
( ,  ,  ,  ... ,  )

m m
m m

m m

y y
y a C

y y
y a C

y y
y a C

y f x y y y
−

⎧ ′⎪ =⎪ ⎧ =⎪⎪ ⎪⎪ ′ = ⎪⎪ ⎪⎪ =⎪

  or 
                                            

 1,       1, 2, ...  1
           with   

( ) ,            
j

j
y j m

f
f j m

+⎧⎧ = −′ ⎪⎪ =⎪ ⎪=⎨ ⎨⎪ ⎪= =⎪ ⎪⎩ ⎩

y f
y a C

 

 which is a system of 1st order equations and thus can be solved using the methods in section 9.6. 
 

Example 9.6  Solve the 2nd order initial value problem. ⎪⎪⎨⎪
 

( )
( ) ( )

0         0,  1

0 1,   y 0 0

y y x

y

⎧ ′′⎪ + = ∈

using Euler’s method with h = 0.1. 
 

Solution   As h = 0.1, the solution domain is divided into 10 sub-regions with 11 nodes xi. The 
problem is to generate numerical solution {xi, yi}(i=1,10) from the given initial data. 

 

Firstly, we put , then the problem becomes 'y =
 

                   

( ) ( )

      := 
   := 

0 1,   z 0 0

y z f
z y g
y

⎧⎪ ′ =⎪⎪⎪ ′ =−⎨⎪⎪⎪ = =⎪⎩

 
      0.1   0.1 

 

x0 = 0   x1    x2                      x10 = 1 

 

Now, we can use Euler’s method to solve the problem, i.e., 
 

         1

1

      0.1
      0.1

n n n n

n n n n

y y hf y
z z hg z

+

+

⎧ = + = +⎪⎪⎨⎪ = + = −⎪⎩
 

For n = 0: y0 = 1, z0 = 0  (as given in the problem) 
   y∴ 1 = y0 + 0.1 z0 = 1 + 0.1*0 = 1 
   z1 = z0 – 0.1 y0 = 0 – 0.1*1 =  – 0.1 
 

For n = 1: y2 = y1 + 0.1 z1 = 1 + 0.1*(– 0.1) = 0.99 
   z2 = z1 – 0.1 y1 = – 0.1 – 0.1*1 =  – 0.2 

: 
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      8     Solution of Initial Value Problems Using Maple/MATLAB 
 
       

9.8 
 

Solution of Initial Value Problems Using Maple 
 

The Maple function “dsolve()” can be used to find the solution of initial value problems and 
evaluate the value of the solution at any given point.   The syntax is 

 

dsolve(ODEs, numeric,method=rkf45,vars,output=procedurelist) 
 
 

where ODEs :  a set of  ordinary differential equations and initial conditions y(a)=b, D(y)(a)=c, 
etc. 

            vars  :    (optional) unknowns of the ODE problem (one variable, or a set or list of them).  
 

Example 1   Solve  
" 2 1
(0) 1, '(0) 0

y y
y y

= +⎧
⎨ = =⎩

 

 
> dsys := {diff(y(x),x,x) = 2*y(x) + 1, y(0)=1, D(y)(0)=0}; 
> dsol := dsolve(dsys, numeric,method=rkf45,  
          output=procedurelist); 
> dsol(0.4); 
> soly:=t->rhs(dsol(t)[2]); 
> solDy:=t->rhs(dsol(t)[3]); 
> with(plots): setoptions(axes=BOXED); 
> p1:= plot(soly, 0..2, linestyle = SOLID, legend = “y(t)”); 
> p2:= plot(solDy, 0..2, linestyle = DOT, legend = “D(y)(t)”); 
> plots[display]({p1,p2}); 

 

yields 

              
0.4, ( ) 1.24646863729600832, ( ) 1.26503188892540352dt y t y t

dt
⎡ ⎤= = =⎢ ⎥⎣ ⎦  
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Example 2   Solve  
'
'
(0) 2, (0) 1

x y
y x y
x y

=⎧
⎪ = +⎨
⎪ = =⎩

 

 
> dsys:={diff(x(t),t)=y(t), diff(y(t),t)=x(t)+y(t), x(0)=2,  
         y(0)=1}; 
> dsol:=dsolve(dsys, numeric, method=rkf45,  
         output=procedurelist):dsol(0.4); 
> solx:=t->rhs(dsol(t)[2]); 
> soly:=t->rhs(dsol(t)[3]); 
> with(plots): setoptions(axes=BOXED); 
> p1:= plot(solx, 0..2, linestyle = SOLID, legend = “x(t)”); 
> p2:= plot(soly, 0..2, linestyle = DOT, legend = “y(t)”); 
> plots[display]({p1,p2}); 

 

yields 
 

             [ t=0.4, x(t)=2.69118459002265676, y(t)=2.60811749186656749] 
 

 
 

 
Solution of Initial Value Problems Using MATLAB  
 

There are 7 built-in routines, ode45, ode23, ode113, ode15s, ode23s, ode23t and ode23tb, 
which solve initial value problems for ordinary differential equations.   The syntax is 

 

[T,Y] = solver(odefun, tspan, y0) 

[T,Y] = solver(odefun, tspan, y0, option) 

[T,Y,TE,YE,IE] = solver(odefun, tspan, y0, option) 

sol = solver(odefun, [t0 tf], y0…) 
 

where solver should be replaced by one of  the 7 built-in routine names listed above.   
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Example    Solve   
'
'
(0) 2, (0) 1

x y
y x y
x y

=⎧
⎪ = +⎨
⎪ = =⎩

To solve this system, first create a function “dsys()” containing the equations. 
 

function  dy = dsys(t, y) 

dy = zeros(2,1);  % a column vector 

dy(1) = y(2); 

dy(2) = y(1)+y(2); 
 

Then solve the above system on a time interval [0 1] with an initial vector [2 1] at time t=0 
and plot the results. 

 

>> [T,Y]=ode45(@dsys, [0 1], [2 1]); 

>> plot(T,Y(:,1),‘-’,T,Y(:,2),‘-.’) 
 

 
____________________________________________________________________________ 

 
 

EXERCISES 9 
 

 

Q9.1  Use Euler's method to approximate the solution for each of the following initial value problems. 
 (a)  . sin e ,    0 1,   (0) 0    with 0.5xy x x y h−′ = + ≤ ≤ = =

 (b)  
2

' ,    1 1.2,    (1) 1    with   0.1y yy x y
x x

⎛ ⎞⎟⎜= + ≤ ≤ = =⎟⎜ ⎟⎜⎝ ⎠
h . 

 
 

Q9.2  Use Taylor's method of order four with h = 0.1 to approximate the solution to  
 

   y y x  x' , [ , . ],= − + + ∈1 0 0 2       y(0) = 1. 
 

   (Ans:  y(0.1) = 1.00484,      y(0.2) = 1.01873 ) 
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Q9.3  Use Taylor's method of order two with h = 0.1 to approximate the solution to the initial value 
problem in Q9.1(b). 

 

              (Ans:  y(1.1) = 1.214999,  y(1.2) = 1.465250 ) 
 

Q9.4   Given  
2

,     (1) 1.y yy y
x x

⎛ ⎞⎟⎜′ = + =⎟⎜ ⎟⎟⎜⎝ ⎠
    

    (a)  Determine y(0.2) using h = 0.1 by Runge-Kutta 4th order method. 
    (b)  Determine y(0.2) using h = 0.2 by Runge-Kutta 4th order method. 
    (c)  Use the results obtained with the two different step sizes to estimate the error committed in 

(a). 
 (Ans: (a) 1.4675,  (b) 1.4674, (c) 0.000067 
 

 
Q9.5   Describe how the Runge-Kutta (4th order) method can be used to produce a table of values for the 

function    at 100 equally spaced points in [0, 1] dtexf
x

t∫ −=
0

2
)(

 (Hint: find an approximate initial value problem whose solution is f(x)) 
 
Q9.6   Show that the Runge-Kutta (4th order) formula reduces to a simple form when applied to an  

ordinary differential  equation of the form y/= f(x). 
 

 
*Q9.7   Derive the Runge-Kutta 4th order formula. 
 

 
*Q9.8  The Runge-Kutta order two method for y/= f(x),  y(a)=y0  is given by 
 

   1 ( ,  ,  )n n n ny y h x yφ+ = + h

 where [ ]1 2 1 2( ,  ,  ) ( ,  ) ,  ( ,  )x y h a f x y a f x p h y+ p hf x yφ = + + . 
 Show that the local truncation error term is 
 

f
y

f
x

fhf
y

f
x

p
h y ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∂
∂

∂
∂

∂
∂

646
1 32

13 . 

 
Q9.9   Derive the following multistep formula 
 

  (a) 1 3 1 2
4 (2  2 )
3n n n n n
hy y f f f+ − − −= + − +   Milne’s formula 

  (b) ( )1 1 1 28 5 4
3n n n n n n
hy y f f f f+ − − − −= + − + − 3  

  (Hint: (a) p = 3, m = 3; (b) p = 1, m = 3) 
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Q9.10  Solve the initial-value problem  
    ( ),       2 2xy x y y′ = − =

  from  x = 2 to x = 2.3 using h = 0.05 and Adam-Bashforth method. Obtain the starting values from  

exact solution  ( ) 2
2
xy x

x
= +  

 
Q9.11 Solve the initial-value problem  
    ( ),       2 2xy x y y′ = − =

  from  x = 2 to x = 2.3 using h = 0.05 and Milne’s formula in Q9.9(a). Obtain the starting values     
             using Euler’s formula. 
 
Q9.12 Derive the following Predictor-Corrector formula and corresponding truncation errors             

                           
( ) ( )

( ) ( )

3
1 1 11

3
1 1 2

53 ,           
2 12

1,            
2 1

p
n n nn

c
n n n n

hy y f f E h y

hy y f f E h y

ξ

ξ

−+

+ +

′′′= + − =

′′′= + + = − 22

 

 
Q9.13 Derive the local error estimate for the Milne Predictor-Corrector formulae  

                    
( ) ( ) ( )

( ) ( ) ( )

55
3 1 2 11

55
1 1 1 1 2

4 12 2 ,           
3 4

14 ,                  
3 9

p
n n n nn

c
n n n n n

hy y f f f E h y

hy y f f f E h y

ξ

ξ

− − −+

+ − + −

= + − + =

= + + + = −

1

2

4
5

0

 

 
Q9.14 Use the Predictor-Corrector in Q9.4(a) to find a solution for y /=1– y at x = 0.2 given y(0) = 0 and 

y(0.1) = 0.09515. Estimate the error.  
 
Q9.15 Solve = y + x'y 2,  y(0) = 1, from  x = 0 to x = 2 with h = 0.1 using Adams-Moulton Predictor-

Corrector method. The starting values, corrected to six decimal places are  y(0) = 1.000000,    
y(0.1)   = 1.105513,   y(0.2) = 1.224208,   y(0.3) = 1.359576.   Compute the discretization error 
Dn+1, and estimate the error at x = 2. 

 
Q9.16  Find the region of values for h over which 

           ( ) ( )( )1
11 19 , 19 5

24
k k

n n n nn n
hy y f x y f f f−

+ −+ +
⎛ ⎞⎟⎜= + + − + ⎟⎜ ⎟⎜⎝ ⎠1 2n− , k = 1, 2, ..., and nx fixed, converges. 

 
Q9.17  Show that the correct formula 

     y y
h

f x y f x yn n n n n n+ = + +1 2
( , ) ( , )+ +1 1  is stable for equations of the form y' = λy. 

 

Q9.18  Determine the interval of absolute stability for Euler's method. 

Q9.19  Consider  
(0) 1,     (0) 1

y yz x
z xz y
y z

⎧ ′⎪ = +⎪⎪⎪ ′ = +⎨⎪⎪⎪ = =−⎪⎩
            Find y(0.1), z(0.1), y(0.2) and z(0.2) using Runge-Kutta method (order 4) with h = 0.1. 
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Programming 

Q9.20  Write a subroutine for solving the 1st order initial value problem   
0

( ,  ),    [ ,  ]
( )

y f x y x a b
y a y

⎧ ′⎪ = ∈⎪⎨⎪ =⎪⎩
using Taylor series method of order four. Then test your subroutine by solving 

  1,      0 1,  (0) 1.y y x x y′ =− + + ≤ ≤ =

Compare your result with the exact solution y t t t( ) e= + − . 
Hint:   1. Taylor series method of order 4: 

2 3 4
(4)

1 ( ,  ,  )
2! 3! 4!n n n n n n n n n
h h hy y hy y y y y hT x y+ ′ ′′ ′′′= + + + + = + h . 

        2. Define T(x, y, h)  as an external function. 
         

         3. Solve the initial value problem using a subroutine with header. 
           
  SUBROUTINE TAYLOR4 (A, B, N, Y0, XI, YI) 
  where  A, B, N, Y0 – input 
   XI(N), YI(N) – output of the numerical solution ( ,  ),  1,  .i ix y i N=  

Algorithm
   H = (B–A )/N 
                         X = A 
                             Y = Y0 
   FOR I = 1 TO N DO       
           Y = Y+H*T (X, Y, H) 
           X = X+H 
          YI(I)=Y 
                                         XI(I)=X 
                              RETURN 

4. Write a main program which reads A, B, N, Y0, calls Taylor4 to find the numerical 
solution, and prints the result). 

 

Q9.21 Using the program developed in Q9.20 as a guide, write a program based on the improved Euler 
method to solve the 1st order initial value problem in Q9.4. 

 

Q9.22 Using the program developed in Q9.20 as a guide, write a program based on the Runge-Kutta 
method (order 4) to solve the 1st order initial value problem in Q9.4. 

 

Q9.23 Write a program which use the predictor-corrector pair in Q9.12 to solve the 1st order initial value  
problem  

                                 
' 1 ,      0 1
(0) 0

y y x
y

⎧ = − ≤ ≤⎪⎪⎨⎪ =⎪⎩
 Obtain the starting values using the Euler’s or Runge-Kutta methods. Use step size h = 0.1. 
 

 Hint: 1)  Write an external function F(x, y) to define f(x, y) = 1– y. 
 

2) Write a subroutine PCorrector to solve an initial-value problem using the pair in Q9.16 
given (x0, y0), (x1, y1), H, N, Tol      
   

 SUBROUTINE PCORRECTOR (X0, Y0, XI, YI, H, N, Tol, Status) 
   where Status – output. Status = ‘hlarge’ if step size is too large. 
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Algorithm (PECE process) 
 Set f0 = f(x0, y0) 
       f1 = f(x1, y1) 
       x = x1 
      yc = y1  

   For  i =1  to N – 1       
          Set x = x+h 
              yp = yc+h/2*(3f1 – f0)               P 
              f2 = f(x, yp)                                E 
              yc = yc+h/2*(f1 + f2)                C 
              f2 = f(x, yc)                    E 
              error =… 
        if (error > Tol) then  

status= ‘hlarge’ 
return 

        else 
    call xyout(x, yc) 
        f0 = f1 
        f1 = f2 
                              Return 
 

3) Write a main program which reads a, b, y0, Tol, N; calls a subroutine EULER  to 
calculate the starting  values (x0, y0), (x1, y1) for the sub PCorrector,  and calls the  
subroutine PCorrector to calculate (xi, yi), i = 1 to N. 
 

Algorithm: 
Input a, b, y0, Tol, N 
h = (b – a)/N 
x0 = a 
call Euler(a, b, h, y0, xi, yi) 
x1 = xi(1) 
y1 = yi(1) 
call Pcorrector(x0, y0, x1, y1, h, N, Tol, Status) 
if (status = ‘hlarge’) then 

output (‘h too large’) 
stop 

end 
 

Q9.24  Write a program based on the Runge-Kutta method (order 4) to solve the system of 1st order 
equations in Q9.23. Choose a = 0, b =1, h = 0.1.  

    

               SUBROUTINE   RK4TWO ( a, b, y0, z0, N) 
 
Q9.25 Solve the initial value problems in Q9.1, Q9.4 and Q9.20 using Maple/Matlab built-in functions 
 
__________________________________________________________________________________________________________________________________________________________________ 
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       Solution of Boundary Value Problems for 

Ordinary Differential Equations  

CHAPTER 

10 

 
 

For differential equations of order m (greater than 1), m  conditions must be given to specify the 
values of the unknown function and/or its derivatives in order to obtain a unique solution. In the 
problems discussed so far, all the conditions are given at the same value of x, generally at the start 
of the interval of x. This kind of problems is called initial value problem. 
 

If the conditions are given to specify the function and/or its derivatives at more than one point 
(usually end points), the problem is referred to as a boundary value problem. 
 
 

In this chapter, we study three types of methods for solving second order two point boundary value 
problems 

 

                                                                                                               (10.1) 
"     ( , , '),
( )  , ( ) .

y f x y y
y a A y b B

⎧ =⎪⎪⎨⎪ = =⎪⎩
 

 
 

              Shooting Method for Two Point Boundary Value Problems 
 
 

10.1 

 

Let  z = y', then the two point boundary value problem (10.1) becomes  

                                                    

( , , )
( ) ,    ( )

y z
z f x y z
y a A y b

⎧ ′⎪ =⎪⎪⎪ ′ =⎨⎪⎪⎪ = = B

′ =
⎪⎪ = =⎪⎩

⎪⎩                                                             

(10.2)

                 
Idea Behind the Shooting Method 

 

By putting aside the condition y(b)=B and imposing a condition z(a)=α estimating the value of z(a) 
(i.e. y'(a) ), we can form an  initial value problem:    

 

                                                         ⎪⎨⎪
                                                            (10.3) ( , , )

( ) ,    ( )

y z
z f x y z
y a A z a α

⎧ ′⎪ =⎪⎪

which can be solved using the methods in section 9.6 to yield a numerical solution  

starting from   as shown below 
{ } 1( , , ) N

i i i ix y z
=

0( , , )x A α
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0 1 2

1 2

1 2

  

( )              ...   ( )

                     ...   

                    ...       

n

n

n

a x x x x b

A y y y

z z zα

= =

                                               (10.4) 

 
Obviously, the yn value in (10.4) depends on the α value chosen and so we can write 
 

                                                               ( ) ( )n ny y y bα= ≈
 

to indicates that it is the numerical approximation of y(b) obtained by using  ( ) . z a α=
 
It is also clearly that the solution (10.4) of the initial value problem (10.3) automatically satisfies 
all the equations/conditions of the boundary value problem (10.2) except for the condition y(b)=B 
which was put aside before.  However, if the α value is so chosen that  
 

                                                                    ( )ny Bα ≈
 

then the solution (10.4) satisfies all the equations and conditions of (10.2) and hence is the solution 
of the given boundary value problem. 
 
Hence, the problem becomes to determine the α value  which leads to , then solve the 
equivalent IVP (10.3) using the α value  determined, and then use the solution as the solution of 
the boundary value problem.   

( )ny α ≈ B

B
 
The shooting method is a method for finding the  α value  which leads to  through an 
iteration process. 

( )ny α ≈

 
Algorithm and Formulation 
 

1)  Guess , then solve the initial value problem 1 ( )z a α=

                                (10.5)  

1

 ( ,  ,  )
( ) ,    ( )

y z
z f x y z
y a A z a α

⎧ ′⎪ =⎪⎪⎪ ′ =⎨⎪⎪⎪ = =⎪⎩

to yield the solution   with  { } 1( , , ) N
i i i ix y z

= ( )1 1ny Bα =

as shown in Figure 10.1 
 

 2)  Guess  then solve the initial value problem 2( ) ,z a α=
 

2

=
( ,  ,  )

( ) ,    ( )

y z
z f x y z
y a A z a α

⎧ ′⎪⎪⎪⎪ ′ =⎨⎪⎪⎪ = =⎪⎩

                              (10.6) 

 

  to yield the solution   with . { } 1( , , ) N
i i i ix y z

= ( )2 2ny Bα =

  

y

 x  

 y (α2) = B2 

1) = B1 

n

A

B
 yn(α

 xn= b a = x0 

Figure 10.1 
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. 
3) Find a new estimate to z(a) (say α3 )  such that   3( )ny Bα ≈
 

The given conditions are  
 

                                                             ,       1 1( )ny Bα = ≠ B B

B

2 2( )ny Bα = ≠
 

which represent two points  in the  curve as shown in Figure 10.2. 1 1 2 2( , ) and ( , )B Bα α ( )ny α
 
The problem is to find α  where . For this, we approximate the curve by a straingt 
line passing through the two given points and use α

( )ny α ≈

3 to approximate α.  From the diagram, we 
have  

 

                 2 1 1 1
3 1 2 1

2 1 3 1 2 1
ta                            (10.7) n      ( )

B B B B B B
B B

θ α α α α
α α α α

− − −
= = ⇒ = + −

− − −

′ =
⎪⎪ = =⎪⎩

 

 B2 

 B
 B1

 α1  α3  α2
α

  yn(α)

Exact α  

  yn(α) 

θ 

 
 
 
 
 
 
 
 
 
 

                               Figure 10.2 Linear interpolation of the function yn(α) 

 
4) Solve initial value problem  
 

                ⎪⎪⎨⎪
                                                                (10.8)  

3

,
( ,  ,  ),

( ) ,    ( ) ,

y z
z f x y z
y a A z a α

⎧ ′⎪ =⎪

 

to yield the solution   with . { } 1( , , ) N
i i i ix y z

= ( )3 3ny Bα =

 
5) If 3   B B Tol− < or  3 2B B Tolerance− <

} 1( , , ) N
i i i ix y z

=

← ←

3← ←

then  

                    take {  as the solution of the BVP and stop 
        else 
                    update    α α  1 2,   1 2B B
                                  α α  2 3,   2B B
                    and goto step 3 
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Example 10.1  Solve the following  two-point boundary value problem  

                    
( )

( ) ( )

31          0,  2
50

50 1,   y 2
6

y y x

y

⎧⎪⎪ ′′ = ∈⎪⎪⎪⎨⎪⎪ = =⎪⎪⎪⎩

                         

Using the shooting method starting with α1 = – 0.09, α2 = – 0.1 and h = 1. 
Iterate until ( ) ( )2 0.001ny yα − ≤ . 

Solution    
 

As  h = 1, the solution domain is divided into 2 regions with 3 nodes.  The problem is:   
 

Given  y0 and  y2 ,   find the numerical solution of y at other nodes, in 
this case we only need to find y1. 

 
Firstly, we put  = z, then the problem becomes to solve the boundary value problem 'y

                                 

( ) ( )

3

,

0.02 ,
50 1,   z 2 .  
6

y z

z y

y

⎧⎪⎪ ′⎪ =⎪⎪⎪⎪ ′ =⎨⎪⎪⎪⎪ = =⎪⎪⎪⎩

                           (10.9) 

 

To solve this problem, we consider the differential equations and the  first boundary condition 
but put aside the second boundary condition and add in one additional initial condition, i.e., 
consider   

                                                               (10.10) 
( ) ( )

3

,

0.02 ,
0 1,   z 0

y z

z y
y α

⎧ ′⎪ =⎪⎪⎪⎪ ′ =⎨⎪⎪⎪ = =⎪⎪⎩
.

This problem can now be solved to yield numerical solution from (x2
1{( ,  )}i i ix y = 0, y0). If α is 

such chosen that the solution of (10.10) satisfies the boundary condition which we put aside 
before, then this solution is the solution of the boundary value problem, as it  satisfies all 
conditions in (10.9).  

 
However, in general for an arbitrary chosen α, the solution from the initial value problem  
(10.10) will not satisfy the boundary condition which has been put aside. Therefore, we need 
an iterative process to determine the approximate α, such that the solution obtained from the 
initial value problem satisfies  

   ( ) ( )Ny y b Tolα − ≤ . For the current problem  we require ( )2
5 0.001
6

y α − ≤ . 

Iteartion 1:  Choose α = α1 = – 0.09, then solve (10.10) with z0 = α = α1  
 

Using Euler’s method  
1

3
1

       

      0.02
n n n n n

n n n n

y y hf y z

z z hg z
+

+

⎧ = + = +⎪⎪⎪⎨⎪ = + = +⎪⎪⎩ ny
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y0 = 1, z0 = – 0.09 
y1 = y0 +  z0 = 1– 0.09  = 0.91 
z1 = z0 + 0.02 =  – 0.09 + 0.02*13

0y 3 =  – 0.07 
y2 = y1 +  z1 = 0.91 – 0.07 = 0.84  (=:B1) 

As  ( ) ( )2 1 2
50.84 0.001
6

y y xα − = − > ,  continue iteration. 

Iteartion 2: Choose α = α2 = – 0.11 and then solve (10.10) with α = α2       

y0 = 1, z0 = – 0.11 
y1 = y0 +  z0 = 1– 0.11  = 0.89 
z1 = z0 + 0.02 =  – 0.11 + 0.02*13

0y 3 =  – 0.09 
y2 = y1 +  z1 = 0.89 – 0.09 = 0.80  (=:B2) 

As ( ) ( )2 1 2
50.80 0.001
6

y y xα − = − > , go to the next iteration 

Iteartion 3: Determine α3 using the formula 10.7, 

           ( ) 1
3 1 2 1

2

5 0.84
60.09 0.093

0.80 0.84
B B
B B

α α α α
−−

= + − =− + =−
− −

 

Then solve (10.10) with α = α3 = z0 
 

            y1 = y0 +  z0 = 1– 0.093  = 0.907 
      z1 = z0 + 0.02 =  – 0.093 + 0.02*13

0y 3 =  – 0.073 
      y2 = y1 +  z1 = 0.907 – 0.073 = 0.834 
 

Now, ( ) ( )2 1 2
50.834 0.001
6

y y xα − = − < . 

Hence the solution of the initial value problem (10.10) with α=α3 is the solution of 
the given boundary value problem and hence y(1)= y1= 0.907is the solution of the 
given boundary value problem . 
 

 

              Finite Difference Methods    
 
 

10.2 

 

This method enables us to replace a differential equation by a system of algebraic equatoins. If the 
differential equation is nonlinear, the algebraic equaltions will also be non-linear. 

 

    Consider 

                                                                              
(10.11)

 

( ) ( ) ( )
( ) ,    ( )

y p x y q x y r x
y a A y b B

⎧ ′′ ′⎪ + + =⎪⎨⎪ = =⎪⎩
To solve the equation, we divide [a, b] into N subintervals with (N+1) equally spaced nodes a = x0, 
x1, ..., xn = b.  Then the problem becomes to determine y1, y2, ..., yn -1 from the given boundary 
values y0=A and yn=B. To find the numerical solution of the (n-1) unknowns, we require equation 
(10.11) to be satisfied at all nodes where the function value is to be determined, i.e. 
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        .                                    (10.12) " ( ) ' ( ) ( ), 1,2,..., 1i i i i i iy x y g x y r x i nρ+ + = = −
 
Using then central finite difference scheme 

               2 21 1 1 1
2

2
( ) ( ),       ( ) ( ).

2
i i i i i

i i
y y y y y

y x O h y x
h h

+ − + −− − +′ ′′= + = +O h          (10.13) 
               

Equation (10.12) becomes  

  1 1 1 1
2

2
2

i i i i i
i i

y y y y y
p q

hh
+ − + −− + −

+ + i iy r= ,                                 (10.14) 

or 
1 1 ,   ( 1, 2, ...,  1)i i i i i i ic y d y a y b i n+ −+ + = = − ,                             (10.15) 

 

where                      2 21 11 ,   2 ,   1 ,   
2 2i i i i i i i .ip d h q a hp b h r= + =− + = − =c h                (10.16)

  

In matrix form, equations (10.15) can be written as  
 

                       

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

  =         i.e       = 

n n n n n

n n n n n

d c O y b a A
a d c y b

A b
a d c y b

O a d y b c B

y

− − − − −

− − − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

            (10.17)   

 
Algorit
              

hm: 

1)   Construct the tri-diagonal system 
          

2)   Solve the tri-diagonal system   
 

Example 10.2    Solve                                                             (10.18) 
"          (1,3)  

(1) 1.1752, (3) 10.0179
y y x

y y
= ∈⎧

⎨ = =⎩
using the Finite Difference method with h=0.5. 

  

S
             

olution 

 As  h=0.5, the solution domain (1,3) is divided into 4 subregions as shown. 

   

0.5          0.5          0.5         0.5

0 1 2 3 41 3x x x x x= =  

Now the problem is:   Given y0 and y4,  find    and   respectively representing the 
value of y(x) at x

1,y y2

   3)                                                               (10.19) 

3y
1, x2 and x3. 

 
For this purpose, we require equation (10.18) to be satisfied at the node xi, i=1, 2, 3: 
 

" , ( 1, 2,i iy y i= =
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Approximating   byiy ′′   1
2

2i i i
i

1y y y
y

h
+ −− +′′  we obtain   = ,   1 12i i iy y y

2 iy
h

+ −− +

 

               that is                         

=  

  2
1 1(2 ) 0i i iy h y y+ −− + + =      (i=1, 2, 3) 

                               

4

.

 
or in matrix form 
 

2
1 0

2
2

2
3

(2 ) 1 0

1 (2 ) 1 0

0 1 (2 )

h y y
h y

y yh

⎡ ⎤− + −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− + ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

                              (10.20) 

 
ow,   h=0.5, ,  we thus have 

 

                                     y
y

− −

  0 41.1752, 10.0179y y= =N

1

2

3

2.25 1 0 1.1752
1 2.25 1 0
0 1 2.25 10.0179

y⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
olving the above system yeilds,      

y
y

S
 

y
  

1

2

3

2.1467,
3.6549,
6.0768.

=
=
=

 

 

Note:  It is common to normalise a function to interval [0,1] by substitution  x = (b - a) t +a. 

 
rror Analysis - Richardson's Extrapolation 

+ +2 4                                                                (10.21) 

 

E
 

y x y x Ah( ) ( )= + Bhh
 

y x y x A
h

B
h

h / ( ) ( ) ...2

2 4

4 16
= + + +

                        (10.22) 
 

4*(10.22) – (10.21):    

[ ] 4
/ 2

1( )= 4 ( ) ( ) ( )
3 h hy x y x y x O h− +

 

                                                   (10.23) 

By neglecting the higher order terms of h, we obtain the Richardson’s extrapolation formula 
 

/ 2
1y ( ) [4 ( ) ( )]
3r h hx y x y x= − . 

 

Remark 1.  The errors in yh(x) and yh/2(x) are of order two of h, while the error in Richardson’s 

Remark2.  ate and represent the improved results by 
Richardson’s extrapolation formula using table form as shown below. 

extrapolation formula is of order 4 of h. 
 

In practice, it is convenient to calcul
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/ 2

1

1 2 2 1

3

2 4 4 2

2 2

improved  

(4 ) / 3

2 (4

(4 ) / 3

i hi h i

i i i i

) / 3

rix y y y
y

a h y y y y
y

a h y y y y

a ih y y y y

+ −

+ −

+ −

  

 
 

Algorithm 
 

enerate  using step size h; (1) G { }1 2, ,..., ny y y

(2) Generate { } using step size 2h; 1 2 2, ,..., ny y y

24
) .

3
i i(ri

y y−
=  (3) Calculate y y a ih≈ +

 
 

              Collocation Methods  
 
 
 

10.3 

In collocation methods, a linear combination of a set of linearly independent functions is used to 
approximate the solution function  via the following steps:  

i=

(ii) x) to satisfy all the boundary conditions and the differential  
equation at some values of x.  

 
Remark: ll boundary conditions and the differential 

, b]. To obtain more accurate result, simply increase the 

 

Example 10.3   S
y y= =              (10.25)⎪⎪⎩

 

y we approximate the solution by the following form 
 

                                (10.26) 

As there are four coefficients to determine, w
be obtained by making yN(x) to satisfy the two 
equation at two chosen points in [0,1]. 

 

(i) Express the solution in terms of a set of ‘basis’ functions ( ){ },  1,  2, ......, Nx iϕ = , i.e., i

seak a solution of the form ( ) ( )
N

N i iy x c xϕ=∑  

 Determine ci by making yN(
1

 The solution determined will satisfy a
equation at some points in [a
number of basis functions. 

olve 
"( ) ( )                                                                                                (10.24)y x y x=⎧⎪⎪⎨ (0) 0, (1) 1                                                                         

 

Solution    Firstl
2 3

1 2 3 4( ) .Ny x c c x c x c x= + + +                         
 

e need to construct 4 equations, which can 
boundary conditions  and the differential 



Ch 10  Solution of Boundary Value Problems for ODEs    173  

 

 

                                                                 (10.27) 
                          (10.28) 

 
For  yN(x) to satisfy the differ

c x c c x c x c x+ = + + +  

or                             2 3 4( 2) ( 6 ) 0+ + − + − = . 
 

points in [0,1], namely ¼  and  ¾ , such that the above 
satisfied at this points. Thus, 

 

For yN(x) to satisfy the boundary conditions (10.25), we require 

1 0c =                 

2 3 4 1.c c c+ + =                                        

ential equation, we substitute (10.26) into (10.24) to yield 
 

2 3
3 4 1 2 3 42 6c

 

   2 3c c x c x c x x 1

Then we choose two  
differential equation is 

1 2 3 4
1 1 1 6( 2) ( ) 0
4 16 64

c c c c+ + − + − =                            (10.29) 
4

1 2 3 4
3 9 27 18( 2) ( ) 0 .                         (10.30) 
4 16 64 4

c c c c+ + − + − =

 
Solving the system of equations (10.27)-(10.30) yields 
 

4

0,

0.161616.

c

c

=1
2
3

0.852237,
0.0138527,

c
c

=

=

Therefore,   8527 0.161616 .Ny y x x x= = − +  
 

mply increase the number of basis functions. 
 
 

=−  

 

  2 30.852237 0.013

To obtain more accuracy, si

 

              Solut ATLAB  ion of  Boundary Value Problems for ODEs using Maple/M
 
 

10.4 

 
S  of  Boundary Value Problem for ODEs using Maple olution
 

Maple uses the  function  “dsolve()”  to find the numerical solution of boundary value problems 

 

uations, and initial/boundary conditions 
numeric :  
vars       :  (

od is to 
bination of the base 

for ordinary differential equations. The syntax is 
 

dsolve(odesys, numeric, vars, options) 

where    odesys   :  set of ordinary differential eq
name, instruct dsolve to find a numrical solution 
optional) the unknowns of the ODE system 

options: (optional) method = bvp(Submethod) indicates that a specific meth
be used to solve BVP.  Available submethods are a com
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scheme (trapezoid or midpoint), and a method enhancement scheme 

 

Example 1   Solve 

(Richardson extrapolation or deferred correction). These are specified as 
traprich, trapdefer,midrich, or middefer. The default method is traprich. 

 

2

2 3 ( )d y y x
dx

⎧
=⎪

⎨  
(0) 1, (2) 1.2y y⎪ = =⎩

 
>dso yl:=dsolve([diff( (x),x,x)=3*y(x),y(0)=1, y(2)=1.2],  
        numeric); 
>dsol(0.5); 
>soly:=x->rhs(dsol(x)[2]); 
>solDy:=x->rhs(dsol(x)[3]); 
>with(plots): setoptions(axes=BOXED); 
>p1:= plot(soly, 0..2, linestyle = SOLID, legend= “y(x)”); 
>p2:= plot(solDy, 0..2, linestyle = DOT, legend= 
“D(y)(x)”); 
>plots[display]({p1,p2}); 

 
giv

             3700,

es 

 ( ) .551072761778112596d y x
dx

= − ]        [x=0.5,y(x)=0.49227362712711  

 

                          
 

Notes:   soly:=x->rhs(dsol(x)[2]) is to extract the 2nd column of dsol and assign it 
tion of x. 

 

Example 2  So

to soly as a func

2

2 ( ) ( ) 0,d y x ay x
dx

⎧
− =⎪

⎨lve  
(0) 1, (1) 1, '(0) 2y y y⎪ = = =⎩
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> dsys:={diff(y(x), x, x)-a*y(x)=0, y(0)=1, y(1)=1,   
         D(y)(0)=2}; 
> dsol i:=dsolve(dsys, numer c, method=bvp[midrich]); 
> dsol(1); 
> soly:=x->rhs(dsol(x)[2]); 
> solDy:=x->rhs(dsol(x)[3]); 
> with(plots): 
setoptions(axes=BOXED); 
> p1:= plot(soly, 0..2, linestyle=SOLID, legend= “y(x)”); 
> p2:= plot(solDy, 0..2, linestyle=DOT, legend= “D(y)(x)”); 
> plots[display]({p1,p2}); 

 

gives

        

 

             [x=1., y(x)=1., ( ) 2., 2.96069553617247560d y x
dx

= − a = − ] 

                                      
 

Solution of  Boundary Value Problem of ODEs using MATLAB 
 

The function “bvp4c()” can be used to solve boundary value problems (BVPs) for ordinary 
differential equations and produces a solution that is continuous on [a,b] and has a continuous first 
order derivative.  The syntax is 

 

vp4c(odefun,bcfun,solinit) 
it,options) 

 

wh a column vector corresponding 
to he output dydx is a 

sol = b
sol = bvp4c(odefun,bcfun,solin

 

where  odefun  :   A function handle that evaluates the differential equations . It can have the form 
dydx = odefun(x,y) 
dydx = odefun(x,y,parameters) 

 

ere x is a scalar corresponding to x, and  y  is 
y.  parameters is a vector of unknown parameters. T

column vector. 
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bcfun  :   A function  h  boundary conditions. For 

 

s = bcfun(ya,yb) 

 
d yb are column vectors corresponding to y y(b). 

parameters arameters. The output res is a column 
vector. 

 
solinit 

 

  -   Ordered nodes of the initial mesh. Boundary conditions are imposed 
a  b

ess 

parameters  :  (
 
The structure can 
can form solinit with 

 

Examp

 
bvp st write the differential equation as a 

o first order ODEs 

|,
y

andle  that  computes the residual in the
two-point boundary value conditions of the form bc(y(a), y(b)), “bcfun()” can 
have the form 

re
res = bcfun(ya,yb,parameters) 

where ya an (a) and 
 is a vector of unknown p

  :    A structure containing the initial guess for a solution. You create solinit 
using the function bvpinit. solinit has the following fields. 

x
at  = solinit.x(1) and  = solinit.x(end). 

y  -   Initial guess for the solution such that  solinit.y(:,i) is a gu
for the solution at the node  solinit.x(i). 

Optional) A vector that provides an initial guess for unknown parameters.  

have any name, but the fields must be named x, y, and parameters. You 
the helper function bvpinit(). 

le   Solve  
" | | 0y y+ =⎧

⎨ (0) 0, (4) 2.y y= = −⎩

Prior to solving this problem with  4c(), you mu

 

system of tw
y 1 2

2 1

' ,
' |y y

=

= −
 

0
x y

bc y a y b
=

⎨

where    1 2and '.y y y y= =   This system has the required form 
y f⎧ ' ( , )

( ( ), ( )) =⎩
 

n  f  and the bou ATLAB as functions 
)and twobc().   We 

 

The functio ndary conditions  are coded in M
twoode( now create two M-files as follows. 

function dydx = twoode(x,y) 
dydx = [ y(2)  
           -abs(y(1))]; 

 
function res = twobc(ya,yb) 
  res = [ ya(1)  
          yb(1) + 2]; 

 consisting of an initial mesh of fi
 

Form  guess structure ve equally spaced points in [0,4] 
and a guess of constan

 a
t values 1( ) 1y x =  and 2 ( ) 0y x =  with the command  
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>> solinit = bvpinit(linspace(0,4,5),[1 0]); 

Now solve the problem with  
 

 

>> sol = bvp4c(@twoode,@twobc,solinit); 

Evaluate the nu
 

merical solution at 100 equally spaced points and plot  with  
 

>> x = linspace(0,4); 
>> y = deval(sol,x); 
>> plot(x,y(1,:)); 

 

                                                
 
 

EXERCISES  10 
 

Q10.1  oblem 

                     
⎪⎩

with a1= 0.3, a2 = 0.4 and h = 0.5. Use Euler's method for 
solving systems of differential equations Perform several (say 4) iterations. 

Q10.2    Consider the boundary value problem 

  
  

with    y(a) = A    and    y(b) = B 

 th

  

   Solve the boundary value pr

(0) 0,    (1) 1= =
 

y y
y y

⎧ ′′ =⎪⎪⎨⎪
 

 Using the shooting method. Starts 

 
 

 

                                 "y + p(x) 'y  + q(x)y = r(x) ,          a < x < b 

 
 
(a) Use Taylor series to show that e finite differences 
 

           1( ) n
n

1 1 1
2

2
     and       ( )

2
n n n n

n
y y y y y

y x
hh

− + −− + −′ =  
 

 
ifferences in (a) to set up the necessary eqs (in matrix form Ay = b) for the 

numerical solution of the boundary value problem using N iterations. 

y x +′′ =

 have errors of the form     A h2
 + B h4   + C h6  + ... 

(b)  Use the finite d  
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(c) 
   

 with analytical solution  

  curacy of the solution 

 5,  1.7500, 2.3125 ) 
 
__________  
 
PROGRA
 

 W ar two-point boundary-value problem u ing the shooting  

+ – 2y + x = 0,    y(0) = 1,  y(1) = 3   with N = 4. 

Solve the boundary value problem 

              "y + x 'y – 2y + x = 0,          y(0) =1,        y(1) = 3   
  

using the finite difference method with h = 0.25. Compare your results 
y = 1 + x + x2. 

 
(d) Explain (without actually doing) how you go about improving the ac

obtained in (b). 
 

( Ans: (c) 1.312
___________________________________________________________________________________________________________________________________

MMING 

Q10.3 rite a F95 program to solve a line s
method. Hence solve the problem   

 

"y x 'y             
Hint: 

 (1)  Rewrite the B.V.P in the form of  y z⎧ ′ =⎪
( , , )

( ) ,    ( )= .
z f x y z
y a AA y b BB

⎪⎪⎪ =

 
⎪⎪⎪ ′ =⎨

⎪⎩

bprogram. 

 
(3)  Write a subroutine for solving the I.V.P 

,    ( )

y z
z f x y z

 

 (2)  Define f(x, y, z) using a function su
 

0 0

( , , )
( )y a⎪⎪⎪⎩ Y z a Z

⎧ ′ =⎪⎪⎪⎪ ′ =⎨⎪
= =

 

mate of y(b) ). 
 

SUBROUTINE  EulerTwo (a, b, y0, z0, N, Bk) 
COMMON  Xi(100), Yi(100), Zi(100) 

     

      

rit ment the shooting method 
 

 SU lf1, alf2, Tol, MaxNit, Ierr) 
     

using Euler's method to obtain Bk ( esti

a, b, y0, z0   = Input. 
N                 = Input. Number of intervals 
Bk             = Output. The estimate of y(b). 
 

 (4)  W e a subroutine to imple

BROUTINE Shooting (a, b, AA, BB, N, a

a, b        =  Interval of  x, i.e,  [a, b]. 
AA, BB   =  As defined in (1). 
alf1, alf2  =  Initial guesses of z(a) 

B B Tol B B Tolk k k+ − < − <1    or , convergence.  

tions. If the number of iterations >MaxNit, 
 then return. 

Tol     =  Tolerance. If  

MaxNit  =  Maximum number of itera
Let Ierr = 1   and
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 Ierr       =    Output. Return '0' if the iteration converges. 
 

 while (k < MaxNit) 
1 

 EulerTwo (a, b, AA,  alf(k), N, B(k) ) 

Algorithm: 
 h = (b – a) / N 
alf(1) = alf1 
alf(2) = alf2 
k = 0 
Do
             k = k +
            Call 
          If  k 2  Then≥  

if  ( ( ) ( 1)   or  ( ) )  thenB k B k Tol B k BB Tol− − < − <         
                     Ierr = 0 

           alf(k+1) = alf(k)+... 
              ndif 

      

(5)    Write a main put data, calls the subroutine Shooting and prints 
the   numerica r message). 

      

Algorithm: 
       Input  a, b

  
     
     

rges') 

 
 
 
 
 
 

Q10.4  Writ boundary-value problem using the finite difference 
meth 10.2(c) with step size h=0.25. 

 

Hint:    
 (1)  Rewrite the differential equation given in the form of + p(x + q(x)y = r(x)  and then 

1 1 -1 -1n n n n

d c y b

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎥

⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

  

                            return 
       else                

                 
       e
               Endif 
EndDo 
Ierr =1 
Return 
 program which
l result  (or erro

 reads in

, ..... 
       Call  Shooting ( ... ) 

                   If ( Ierr = 0) Then 
        Print  {xi, yi, zi} 
        Else  

              Print ('Not conve
             End 

e a F95 program to solve a linear two-point 
od. Hence solve the problem defined in Q

  "y ) 'y
define p, q, r using function subprograms. 

(2)    Write a subroutine FTriD to construct the tri-diagonal system  (see formula 10.16 and 10.17) 
 

1 1 1 1

2 2 2 2  
a d y b

c

⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢

2n

a d y b
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦
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 SUBROUTINE  FTriD (a, b, AA, BB, N, Ai, Di, Ci, Bi) 
Input:     a, b,  AA,  BB,   as defined in the B.V.P. 
Output:    Ai,  Bi,  Ci, Di,   arrays as defined in above eqs. 

 

 Algorithm: 
 

          h=(b – a) / N 
          

    Bi (i) = h**2*ri 
 (1) – Ai (1) * AA 

n – 1) – Ci (n – 1) * BB 

 (3)    Write a subro al system  
SUBROU E Ci, Bi) 
 COMMO
INPUT  i, Bi, as defined in above eqs. 

n of  
 

in  the tri-diagonal system, 
ts the results. 

 

 

  
   

 

Q10.5  Modif am in Q10.4 to solve the boundary value problem in Q10.2(c)  with  h = 0.25  
and  

 
Q10.6   Solve Q 10.3 using Maple and Matlab built-in functions. 
______________________ __________________________________________________________________ 

 

    
    for  i = 1 to N – 1 

Set   Ai (i) = 1– 1/2 * h * pi 
     Di (i) = – 2 + h**2*qi 
        Ci (i) = 1 + 1/2 *h*pi 
    

                set Bi (1) = Bi
                     Bi (n – 1) = Bi (
 

utine for solving the tri-diagon
TIN   SolTriDS (N, Ai, Di, 
N  Y(100) 
   :     N, Ai, Di, C

OUTPUT    :     Y,         solutio the system

 Write a ma program which reads input data, calls FTriD to form (4) 
calls SolTriDS to solve the tri-diagonal system, and prin

 Algorithm: 

    Input  a, b, ... 
    Call  FTriD ( ... ) 

      Call  SolTriDS (  ... ) 
      Print  solution {xi, yi} 
          End 

. y your progr
h = 0.125.    

 the boundary value problems in 
_____________________________________________________
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       Least Squares Approximation and Curve Fitting  

 
 
 

The chapter concerns two types of approximation: curve fitting and function approximation. In 
curve fitting, we are given a discrete set of data points  describing the relation 
between x and y which may arise from experimental investigation and is usually given in table 
form or as a set of data points in a x-y diagram such as those shown below 

{ } 1( ,  ) m
i i ix y =

 
 

   
 
 
 

 
The purpose of curve fitting is to find a function (usually a polynomial) to approximately describe 
the relation between x and y, i.e y = y(x), or in other words, find a curve which is as close as 
possible to the data points. 
 

In function approximation, we are given a continuous function and our aim is to find the best 
polynomial to approximate the function. The need to approximate a continuous function by a 
polynomial arises from many cases, for example, when the function is an integrand which is not 
integrable analytically such as evaluating 
  

 31 x dx+∫
   

 
In summary,  no matter in curve fitting or function approximation, our aim is to find the best 
function (usually a polynomial function) to fit the given data or function. To achieve this objective, 
we need to answer/tackle the following two essential problems. 

 
  

What do we mean by the best? 
 

The answer to this question is not so straight forward. One would expect that the best curve must 
be the one which is closest to the data points. However, the problem is how to measure the ' 
distance' between a curve and data points. To answer this problem, we need to define an error 
measure. 

 

Denote the error at each point by  
 

                                    e y x yi i i= −( )        (error = estimate –actual data) 
where  y(xi) and  yi  denote respectively the value of the approximation function and the actual 
value of y corresponding to xi, as shown in figure 11. 2. 

xi 0   1    2    3    4 
yi 0   2.1   3.9   6.1   7.9 

CHAPTER 

11 

 y 

x  
•

• • • •
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Now we consider the following quantities to determine which can be chosen as error measures : 
 

i)  1 1 2= ... nE e e e+ + +
 

ii) 2 1 i n
= e = max  iE e∞ ≤ ≤

    

iii) 2
3 2

=1
= e =

n
i

i
E ∑ e        

 
            

    Figure 11.2 Diagram showing local errors 
 
Obviously, both  (ii) and  (iii) can be used as an error measure as the value of  E2 and E3 reflect the 
accuracy of approximation. However, (i) cannot be used as an error measure, as the value of  

does not reflect the accuracy of approximation. For example, even when local errors at 

all the measure points are very large,  may still has zero value if some of the local errors are 

positive and some are negative. 

1
=1

=
n

i
i

E e∑

i
i

e∑

 
How to Find the Best Approximation ? 
 

First, we need to determine the form of the approximate function with certain arbitrary constants. 
Then we determine the arbitrary constants which minimise the error in some sense such as  
Minimax or least squares. 

 
Remark:  Different error measures lead to different approximation methods. The following is two 

widely used approximation methods. 
 

Minimax Approximation   
 

In this method, the distance from Pn(x) to y(x) is measured via the l  norm   ∞

                                 E= 
y P y x P xn

a x b
n− = −

∞ ≤ ≤
max ( ) ( )

. 

Let πn be the set of polynomials of degree ≤  n,  then the Best Approximation P  would 
satisfy    

n
*

y P y Pn
P n

− = −
∞ ∈

* min
π  

 

Least Squares Approximation 
 

In this method, the distance from Pn (x) to y(x) is measured via the squares sum of errors 

                     – for continuous function                                  [ dxxPxyE
b

a n∫ −= 2)()( ]

]                        – for discrete data.
 

[ 2

1

( )
m

i n i
i

E y P x
=

= −∑
Let Pn be the set of polynomials of degree ≤  n, then the best approximation P  would 
be the one that minimises the above E. 

n
*

 e4 
 y 

 x 

y=y(x) 
e3  e5 

 e1= y–y1 

 e2 

 

 O 
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              Least Squares Fit  
 
 

11.1 

Problem:    Given a set of data , find a best polynomial  to fit the data in the 

least squares sense. 

{ } 1( ,  ) m
i i ix y = ( )

0

n
j

n
j

P x a x
=

= ∑ j

 
Error Measure:    In least square fit, the distance from Pn(x)  to  is measured via the squares 

sum of errors at the data points :  
{ } 1( ,  ) m

i i ix y =

                                                   . [ ]
2

1 01

2)( ∑ ∑∑
= == ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=−=

m

i

n

j

j
iji

m

i
ini xayxPyE

 

Derivation of Best Approximation: 
   

 

Obviously, the squares sum of errors depends only on the coefficients ja above. To find the best 

Pn(x) is to choose ja  ( j = 0, 1, ... n) to minimise the error measure E defined above. 
 

As  E E n= ( , , ..., )α α α0 1  , for a minimum of E, we must have   
                

      0 1( ,  ,...,  ) 0,   ( 0, 1, ..., ),n

k

E a a a k n
a

∂
∂

= =  

     ( ) 02     
1 0

=−⎥
⎦

⎤
⎢
⎣

⎡
−⇒ ∑ ∑

= =

k
i

m

i

n

j

j
iji xxay

       
1 0 1

     
m n m

j k k
j i i i i

i j i

a x x y x
= = =

⇒ =∑∑ ∑  

      …, n)  1

0 1 1

     
n m m

k k
j i i

j i i

a x y+

= = =

⎛ ⎞⎟⎜ ⎟⎜⇒ =⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑ ix  (k = 0, 1, …

   
 

which lead to the following  normal equations  
 

Normal Equations for Least Squares Polynomial Fit    
 

                Ca b=   
 

where           c x b y xkj i
k j

i

m

k i i
k

i

m

= =+

= =
∑ ∑

1 1
, .   ( k,  j =  0, 1, …, n).  

1

Let    ,
m

l
l i

i

 

        
x

=

=∑
    

then and thus kj k jc s +=s
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0 100 01 0

1 2 110 11 1

1 20 1

.

nn

nn

n n nn n nn

s s sc c c
s s sc c c

C

s s sc c c

+

+

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

""
""

# # % ## # % #
""

 

Algorithm:
 

 

1) Construct C  and b,  
2) Solve Ca = b for  a,   then   . 2

0 1 2( ) ( ) ... n
n ny x P x a a x a x a x≈ = + + + +

 

Example 11.1  Fit a quadratic to the data  (0, 0), (1, 4),  (-1, 1),  (-2,5).  
 

Solution   The problem is to fit     y2(x) = a0 + a1x + a2x2     to  {  .   }4
1,  i i ix y =

 

     For   m = 4,    n = 2, we have  

                 
1

m

i
i

s x
=

=∑ A
A     ( = 0, 1, 2, …, 2n)   giving A

4

0
1

4
i

s i
=

= =∑  

4

1
1

0 1 1 2 2i
i

s x
=

= = + − − =−∑  

4
2 2 2 2

2
1

0 1 ( 1) ( 2) 6i
i

s x
=

= = + + − + − =−∑  

4
3 3 3 3

3
1

0 1 ( 1) ( 2) 8i
i

s x
=

= = + + − + − =−∑  

 , 
4

4 4 4 4
4

1
0 1 ( 1) ( 2) 18i

i
s x

=
= = + + − + − =∑

       and    giving 
1

( 0,1,2
m

k
k i i

i
b y x k

=
= =∑ )

−

4

0
1

0 4 1 5 10i
i

b y
=

= = + + + =∑  

  
4

1
1

0 1 4 ( 1) 1 ( 2) 5 7i i
i

b y x
=

= = + × + − × + − × =∑

  2
2

1
25.

m

i i
i

b y x
=

= =∑
 

0 1 2 0 0

1 2 3 1 1

2 3 4 2 2

s s s a b
s s s a b
s s s a b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∴ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

        
0

1

2

4 2 6 10
2 6 8 7

6 8 18 25

a
a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        
0

1

2

0.3
1.6
2

a
a
a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Hence,   
                      2

2 ( ) 0.3 1.6 2 .y x x x= + +

 



Ch 11  Least Squares Approximation and Curve Fitting    185 

 
 

              Weighted Least Squares Fit  
 
 

11.2 
 

For experimental data, usually we associate a weight wi with each point (xi, yi). The purpose of 
weighting is to assign varying degree of importance to approximations on certain portions of the 
interval. For the portion which is more important, a larger weight must be assigned to it. 

 
Error Measure: The distance between the approximation function Pn(x) and the data yi is measured by 
 

                      [ ]
2

2

1 1
( )

m m

0

n
j

i i n i i i j i
i i j

E w y P x w y a x
= = =

⎡ ⎤
⎢ ⎥= − = −⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑ ∑  

 

Derivation of Best Approximation 
 

Following the same procedure as in section  11.1, we obtain the following normal equations for the 
weighted least squares fit 
 
 

Normal Equations for Weighted Least Squares Polynomial Fit 
                        

               C    ′ ′=a b

where             
1 1

,    .
m m

k j k
k j i i k i i i

i i
c w x b w y+

= =

′ ′= =∑ ∑ x

i

     

        

1

Let    ,
m

l
l i

i

s w x
=

′ =∑
 

     then         and  thuskj k jc s +′ ′=     

            0 100 01 0

1 2 110 11 1

1 20 1

......

......

...

nn

nn

n n nn n nn

s s sc c c
s s sc c c

C

s s sc c c

+

+

⎡ ⎤⎡ ⎤ ′ ′ ′′ ′ ′
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ′ ′ ′′ ′ ′ ⎢ ⎥⎢ ⎥′ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ′ ′ ′′ ′ ′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# # % ## # % #
"

 

 
 

Example 11.2   Given                  xi         – 2    –1   0    1    2 
                   yi    0.3   0.5   1    2    4.1 
                  wi    0.2   0.5   1    0.5   0.2 
 

        Fit a quadratic to the data.    

 
  Solution     For  m = 5, n = 2, we have   
                      

1

m

i i
i

s w x
=

′ =∑ A
A     ( A = 0, 1, 2, …, 2n)    
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5 5
0

0
1 1

2.4i i i
i i

s w x w
= =

′ = = =∑ ∑                  

( ) ( ) ( ) ( )
5

1
1

0.2 2 0.5 1 0 0.5 1 0.2 2 0i i
i

s w x
=

′ = = × − + × − + + × + × =∑          

5
2

2
1

2.6i I
i

s w x
=

′ = =∑                 

5
3

3
1

0i I
i

s w x
=

′ =∑ =

)n

                        

5
4

4
1

7.4i i
i

s w x
=

′ = =∑    

1
( 0,1,...,

m
k

k i i i
i

b w y x k
=

′ = =∑  

5 5
0

0
1 1

0.2(0.3) 0.5(0.5) 1(1) 0.5(2) 0.2(4.1) 3.13i i i i i
i i

b w y x w y
= =

′ = = = + + + + =∑ ∑  

5

1
1

2.27i i i
i

b w y x
=

′ = =∑ ,    
5

2
2

1
 4.77i i i

i
b w y x

=

′ = =∑
 

 
0 1 2 0 0

1 2 3 1 1

2 3 4 2 2

      
s s s a b
s s s a b
s s s a b
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⎢ ⎥

⎤
⎢ ⎥ ⎢

⎢ ⎥
⎥

⎢ ⎥ ⎢′ ′ ′∴ =⎢ ⎥
⎥

⎢ ⎥ ⎢
⎢ ⎥

⎥
⎢ ⎥ ⎢′ ′ ′⎢ ⎥ ⎥
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0

1

2

2.4 0 2.6 3.13
0 2.6 0 2.27

2.6 0 7.4 4.77

a
a
a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =

 

 

  ⇒ =  0 1 20.9782, 0.8710, 0.3009a a a
 

2
2 ( ) 0.9782 0.8710 0.3009y x x x∴ = + + . 

 
Remark   (problems with least squares methods using normal equations) It can be shown that with 

the increase in n (degree of polynomial), the least squares approximation obtained by 
solving the normal equations becomes progressively worse as the normal equations 
becomes ill-conditioned. 

 
 

              Orthogonal Polynomials 
 
 

11.3 

Definition  (Inner Product):  Let f(x), g(x) be functions defined on [a, b], and w(x) be a weight 
 function defined on (a ,b). We define the inner product of  f  with g by 
                   .)()()(   , ∫=

b

a
dxxgxfxwgf  

 If   f  and  g are discrete (.i.e., defined on a discrete set of data points { }m
iix 1=  ),  then 

                   
f g w x f x g xi i

i

m
, ( ) ( )=

=
∑

1
i( ) .
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Definition   (Orthogonal and Orthonormal):   A family of polynomials { }0)( ≥nxPn  is said to be:  
  Orthogonal  for the interval [a, b] with respect to the weight function w(x) if  
 

                                                 P P r sr s, .= ≠0  whenever   
 

  Orthonormal  if,  in addition,  P P rr r, = ∀1  . 
 
Example 11.3  Show are orthogonal but not orthonormal on    

[–1, 1]. 

2
0 1 2( ) 1,   ( )   and  ( ) 3 1P x P x x P x x= = = −

     Solution    (exercise) 
  
Properties of Orthogonal Polynomials 
 

(1) Every polynomial can be written as a combination of orthogonal polynomials of no greater  
degree. 

 

Let { }0)( ≥nxPn  be an orthogonal family of polynomial on [a, b] with weight function w(x) 
and let f(x) be a polynomial of degree n, then 
 

               
0

,
( ) ( ),         with     .

,

n
r

r r r
r rr

f P
f x a P x a

P P
=

= =∑  

 

Proof     To find as, take inner product of f with Ps: 
 

0

0 0 1 1

, ,

           , , ... , ... ,

           ,

,
    .

,

n

s r r s
r

s s s s s n n

s s s

s
s

s s

f P a P P

a P P a P P a P P a P P

a P P

f P
a

P P

=
=

= + + + + +

=

∴ =

∑

s
 

 

(2) Let { }0)( ≥nxPn  be a set of orthogonal polynomials. If P(x) is a polynomial of degree < k, 

then P(x) is orthogonal to Pk(x). 
 

Proof      
Let    P(x)                     be a polynomial of degree m < k, and  
         be a set of orthogonal polynomials. 0 1{ , ,..., ,..., }m kP P P P
 

Then from property (1) 

                   
0

( ) ( ).
m

s s
s

P x a P x
=

= ∑

Hence 

0
, ,

            0                    (as all ).

m

k s s k
s

P P a P P

s k
=

=

= ≠

∑  
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(3) (Recurrence formulae for generation of orthogonal polynomials) If we set the coefficient of xr 
 in Pr(x) to be 1, and define P-1= 0, P0= 1, then we can generate a unique family of orthogonal 
 polynomials using the following formulae: 
 

                            P x P Pr r r r r+ −= − −1 1( ) ,α β  
    where 
              

                                
r

r
1 1

,
,           0,  1,  2,  ...

,

,
 ,      1,  2,  3,  ...

,

r r

r r

r r

r r

xP P
r

P P

P P
r

P P

α

β
− −

⎧⎪⎪ = =⎪⎪⎪⎪⎨⎪⎪⎪ = =⎪⎪⎪⎩

                    (11.1) 

 

 
Proof    We prove this by mathematical induction. Firstly, we prove that the property is true for P1 

(r = 0). Then we assume that it is true for Pn (r = n-1)  and prove that it is also true for 
Pn+1 (r = n). 

 
(1) Check the property is true for  P1 (r = 0). 
 

  From the recurrence formulae, for r = 0, 
 

 0 0
0

0 0

,
,

xP P
P P

α = , 

 

 . 1 0( )P x a P= − 0

 Hence 

                     
0 1 0 0 0 0

0 0 0 0 0

0 0
0 0 0 0

0 0

, ,

           , ,

,
          , , 0

,

P P P xP P

P xP P P

xP P
P xP P P

P P

α

α

= −

= −

= − =

 

 and so P1 is orthogonal to P0. 
 

(2)    Suppose that the property is true for Pn (r = n-1) , i.e., the Pn constructed from the 
recurrence formulae is orthogonal to P0, P1, …, Pn-1.  We will show here that the  
Pn+1 (r=n) generated from the recurrence formulae will be orthogonal to                 
P0, P1, …, Pn, as detailed below. 

 
From the recurrence formulae, 
 

               1 1
1 1

, ,
,   ,     ( ) ,

, ,
n n n n

n n n n n
n n n n

xP P P P
P x P P

P P P P
α β α+ −

− −
= = = − − n nβ  

 
we have  
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1 -1

1

1
1 1

, = ( ) - ,

              , , ,

, ,
              , , , .

, ,

n j n n n n j

n j n n j n n j

n n n n
n j n j n j

n n n n

P P x - P β P P

xP P P P P P

xP P P P
xP P P P P P

P P P P

α

α β

+

−

−
− −

= − −

= − −

        

(11.2) 

 

For j < n-1,  
 

 , ,n j n jxP P P xP= 0=   (as xPj is a polynomial of degree less than n) 
 

 

Hence from (11.2),  we have 
 

                          1, 0n jP P+ =      for all    j < n-1. 

 
For j = n-1,  from (11.2), we have 

 

1 1 1 1 1 1
1 1

, ,
, , , ,

, ,
n n n n

n n n n n n n n
n n n n

xP P P P
P P xP P P P P P

P P P P+ − − − − −
− −

= − − .

,

1 2

  (11.3) 

 

As from the recurrence formulae 
 

                                    1 1 1 2( )n n n n nP x P Pα β− − − −= − −
 

we have 
 

                                  1 1 1n n n n n nxP P P Pα β− − − −= + + −  
 

and thus 
 

            1 1 1 1 1, , , , ,

                  = , .
n n n n n n n n n n n n

n n

xP P P xP P P P P P P

P P

α β− − − − − −= = + + 2  

 

Hence from (11.3), we have 
 

                   1 1, , 0 ,n n n n n nP P P P P P+ − = − − = 0.  

 
For j = n, from (11.2), we have 

 

1 1
1 1

, ,
, , ,

, ,

                = , , 0.

n n n n
n n n n n n n n

n n n n

n n n n

xP P P P
P P xP P P P P P

P P P P

xP P xP P

+ −
− −

= − −

− =

,
 

 
Hence, the Pn+1  generated for the recurrence formulae is orthogonal to P0, P1, …, Pn. 
The proof is completed.                                                                                               �      
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Example 11.4  Generate  P0, P1 and P2 in  [-1,1]  for  w = 1 
  
Solution      P-1= 0,  P0  = 1. 

 

For  r = 0, 

                 
1

0 0 1
1 0 0 1

0 0
1

,
( )   where  0

, 1

xdxxP P
P x

P P dx
α α −

−

= − = = =
∫

∫
 

              P∴ 1  =  x. 
 

For  r=1 

      

1 3
1 1 1

2 1 1 1 1
1 1 1 1

1 2
1 1 1

1 1
0 0

1

,
( ) -    where  0,

, ,

, 1                                          . 
, 31

x dxxP P
P x P

P P P P

x dxP P
P P dx

α β α

β

−

−

−

= − = = =

= = =

∫

∫

∫

 

  2
2

1 .
3

P x∴ = −  

 
 

              Least Squares Approximation Using Orthogonal Polynomials  
 
 

11.4 

11.4.1  Curve  Fitting 
 

Problem: Given a set of data  {  and a set of orthogonal polynomials }m
iii yx 1),( = { }0)( ≥nxPn  with inner 

product  

                  
P P w x P x P xr s i r i s i

i

m
, ( ) ( )= ( )

=
∑

1  

  find a best approximating polynomial f x a P xr r
r

n
( ) ( )=

=
∑

0  

   to fit the data. 

Error Measure 
 

 Measure the 'distance' from  f(x)  to ( , )i ix y (i=1,m)  via the squares sum of errors at the points 

                               . [ ]
2

1 01

2 )()( ∑ ∑∑
= == ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=−=

m

i

n

r
irrii

m

i
iii xPaywxfywE

 

Derivation of Best Approximation 
   

 

Find the best f(x) by choosing ar ( r = 0, 1, ..., n) which minimise  the E defined above. 
 

Notice that  E E n= ( , , ..., )α α α0 1  .  For a minimum of E, we must have   
               

                               0 1( ,  ,..., ) 0,   ( 0, 1, ..., ),n

k

E a a a k n
a

∂
∂

= =  
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1 0

2 ( )
m n

i i r r i k i
i r

w y a P x P x
= =

⎛ ⎞⎟⎜⇒ − ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑ ( ) 0=

( ) ( ) ( ) ( ) ( )
1 1 0 0 1

     
m m n n m

i i k i i k i r r i r i r i k i
i i r r i

w y P x w P x a P x a w P x P x
= = = = =

⇒ = =∑ ∑ ∑ ∑ ∑  

 

 
0

,  ,  
n

r k r k k k
r

a P P a P P
=

= =∑       as   
0     if  

,  
0    if r k

r k
P P

r k
⎧≠ =⎪⎪=⎨⎪ ≠⎪⎩

 

 ∴  
( )

( )

1
2

1

,  
,  

m

i i k i
ki

k m
k k

i k i
i

w y P x y P
a

P Pw P x

=

=

= =
⎡ ⎤
⎣ ⎦

∑

∑
.                                              (11.4) 

Algorithm: 
 

1)  Construct orthogonal polynomials (P–1), P0, P1, P2, and P3 using property (1) of the orthogonal 
polynomials; 

2)   Construct 
0

( ) ( )
n

r r
r

f x a P
=

= ∑ x   with    determined by formula (11.4) above.
 

ra

 
Example 11.5    Use orthogonal polynomials to obtain a least squares polynomial of degree 3 to fit the 

data  (wi=1) 
          

xi –2 –1 0 1 2 

yi –1 –1 0 1 1 

 

Solution   
   

Construc
          

t orthogonal polynomials (P–1), P0, P1, P2, and P3 using the recurrence relation  (11.1)  

P-1= 0,  P0   = 1 

P1 = (x–α0) P0 = x,            as           

5

0 0 1 1 2 3 4 5
0 5

0 0

1

,
0

, 51

i
i

i

xxP P x x x x x
P P

α =

=

+ + + +
= = =

∑

∑
=   

        P2 = (x– α1) P1– β0 P0 ,  where     
( ) ( )

( ) ( )

5 5
3

1 1
1 1 1 1

1 5 5
21 1

1 1
1 1

,
0

,

i i i i
i i

i i i
i i

x P x P x xxP P
P P P x P x x

α = =

= =

= = =
∑ ∑

∑ ∑
=  

                                                            

5
2

1 1 1
0

0 0

,
2

, 5

i
i

xP P
P P

β == =
∑

=  

                 ∴  P2 = x2 – 2    
 

    Similarly,    α 2 = 0,    β2 = 14
10 ,     P3 = x3 – 2x – 14

10
x = x3 – 17

5
 x. 
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Hence, the least squares polynomial of degree 3 is  
 

                    ( ) ( )
3 ,  

         with 
,  

k
k k k

k o k k

y P
f x a P x a

P P=
= ∑ =                            (11.5) 

Now   
( )

( )

5 5

0
0 1 1

0 5 5
20 0

0
1 1

,  0 0
,  51

i i i
i i

i
i i

y P x yy P
a

P P P x

= =

= =

= = = =
∑ ∑

∑ ∑
=  

  

5

1 1
1 5

21 1

1

,  6 3
,  10 5

i i
i

i
i

y xy P
a

P P x

=

=

= = =
∑

∑
=  

  
( )

( )

( )

( )

5 5
2

2
2 1 1

2 5 5 22 22 2
2

1 1

2,  
0

,  2

i i i i
i i

i i
i i

y P x y xy P
a

P P P x x

= =

= =

−
= = =

⎡ ⎤ −⎣ ⎦

∑ ∑

∑ ∑
=  

 
( )

( )

5 5
3

3
3 1 1

3 5 2523 3 3
3

1 1

17
,  15
,  617

5

i i i i i
i i

i i i
i i

y P x y x xy P
a

P P P x x x

= =

= =

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
= = = =

⎛ ⎞⎡ ⎤ ⎟⎜ − ⎟⎣ ⎦ ⎜ ⎟⎜⎝ ⎠

∑ ∑

∑ ∑
−  

                       
( )

( )

1 3

3 3

3 1      
5 6
3 1 17 1                7 .
5 6 5 6

f x P P

x x x x x

∴ = −

⎛ ⎞⎟⎜= − − = −⎟⎜ ⎟⎜⎝ ⎠

 

 
11.4.2  Approximation of Functions 
 
Problem:  Given a continuous function f(x) and a set of orthogonal polynomials { }0≥rPr , find a best 

least squares polynomial       to fit the data. 
0

( ) ( )
m

r r
r

P x a P x
=

= ∑
 

Error Measure:       
2

0 1
0

( ,  ,  ...,  ) ( ) ( ) ( ) .
b n

n r
ra

E a a a w x f x a P x dx
=

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦

∑∫ r

 
Derivation of the Best Approximation 

   
 

Find the best approximation by choosing ar ( r = 0, 1, ...,  n) which minimise the E defined above. 
 

To minimize  E,    let  0 1( ,  ,  ...,  ) 0,   ( 0, 1, ..., ),n

s

E a a a s n
a

∂
∂

= =   
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0

      2 ( ) ( ) ( ) ( ) 0
b n

r r s
ra

w x f x a P x P x dx
=

⎡ ⎤
⎢ ⎥⇒ −⎢ ⎥⎣ ⎦

∑∫ =

 

0
      2 ( ) ( ) ( ) ( ) ( ) ( )

b bn

s r r s
ra a

w x f x P x dx a w x P x P x dx
=

⇒ = ∑∫ ∫
0

,  ,  
n

r r s s s s
r

a P P a P P
=

= =∑         

                                                                                                                as 
0     if 

,  
0    if r s

r s
P P

r s
⎧≠ =⎪⎪=⎨⎪ ≠⎪⎩

 

Hence, we obtain 

                         
[ ]2

( ) ( ) ( ) ,  
,  ( ) ( )

b
s sa

s b
s ssa

w x f x P x dx f P
a

P Pw x P x dx
= =
∫

∫
                                      (11.6) 

Algorithm: 
 

1)  Construct orthogonal polynomials (P-1), P0, P1, P2, and P3 using property 1 of   
orthogonal polynomials; 

 

2)     Construct   
0

( ) ( )
n

r r
r

f x a P
=

= ∑ x
 
 with  the  ar  determined by formula (11.6) above. 

 
 
 

              Least Squares Approximation using Legendre Polynomials 
 
 

11.5 

Definition  (Legendre Polynomials):  The Legendre polynomials {  is a set of orthogonal })(xPr

polynomials defined on [– 1, 1] with weight function w(x) =1. 
 

Sequence of Legendre Polynomials 
 

The sequence of Legendre polynomials can be derived by the recurrence relations  (property 3 for 
orthogonal polynomials).  

   

Exercise     Show that the first few terms in the sequence are as follows 
 

          
P P x P x P x x P x x0 1 2

2
3

3
4

4 21
1
3

3
5

6
7

3
35

= = = − = − = − +, , , , ,                 ......
 

 

Normalized Legendre Polynomials 
 

It is customary to normalize the Legendre polynomials so that Pk ( )1 = 1 for all k. Thus, the 
normalized Legendre polynomials are 

( ) ( ) ( ) ......  ,8/33035   ,2/35     ,2/13    ,   ,1 24
4

3
3

2
210 +−=−=−=== xxPxxPxPxPP  

      

 
 

Example 11.6 Find the least squares polynomial approximation of order 3 for ex on [– 1, 1] using 
orthogonal polynomials. 
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Solution   Use Legendre polynomials { , the least squares polynomial approximation is })(xPr
3

0
( ) ( )r r

r
P x a P x

=
= ∑      

with   determined by ra
,
,

r
r

r r

f P
a

P P
= ,  

where  ( ) xf x e=  and hence 
1 1 1 100 1 1

0 1 120 0
01 1

,
1.1752.

, 21

xf P dx e dxf P e ea
P P P dx dx

−
− −

− −

−
= = = = =

∫ ∫

∫ ∫
 

Similarly, we can obtain     a1 = 1.1036,   a2 = 0.3578,    a4 = 0.0704. 
 

 

Remark: It can be shown that for the Legendre polynomials with Pr (1) =1, 
 

               
1

2

1

2,  ( ) ,        0, 1, 2, ...
2 1r r rP P P x dx r

r−

= = =
+∫  

 

Hence the Legendre polynomials fit (degree n)  to  f(x)  can be determined by 
 

                                                     
0

( ) ( )
n

r r
r

f x a P
=
∑∼ x  ,     

           

  where                  
1

-1

2 1 2 1,  ( ) ( ) .
2 2r r r

r ra f P f x P+ +
= = ∫ x dx  

 
Example 11.7  Find the least squares approximation of order two to f(t) = sint on [0, π]. 
 

 

 Solution.   Remark:  We can solve this problem by the following two steps 
 

10   Constract orthogonal polynomial by formulae  (11. 1); 

20 Constract the least squares approximation 
2

0
( ) ( )r r

r
f x a P

=
= ∑ x  with  

determined  by  (11. 4). 

ra

    
     Alternatively, we can solve the problem by using Legendre polynomials as follows 
 

Firstly, we need to transform [0, π] to [– 1, 1]  in order to use Legendre polynomials. As 
(1 ) (1 )

2
a x b xt − + +

=  transforms  to  let [ , ]t a b∈ [ 1,1],x ∈ − ( 1
2

t xπ
= + )  

(  in this example).  So the problem is equivalent to approximate 0,a b π= =

                              ( ) ( ) (sin 1
2

g x f t xπ
= = + )     for x on  [– 1, 1] . 
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Thus, the Legendre polynomial fit (degree 2) to g(x) is 
 

12

=0 1

2 1( ) ~ ( )     with   determined by   ( ) ( ) .
2r r r r r

r

rg x a P x a a g x P x dx
−

+
=∑ ∫  

2

2
2 10 12 3 1   sin ( 1)  ~  1 ,         [ 1, 1]

2 2
xx xπ

π π π

⎛ ⎞ −⎟⎜∴ + + − ∈ −⎟⎜ ⎟⎜⎝ ⎠
    

 

 
2

2
2 10 12 3 2 1     sin   ~  1 1 ,       [0, ]

2 2
tt t π

π π ππ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟⎜ ⎜⇒ + − − − ∈⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
. 

 
 

 

              Least Squares Approximation using Chebyshev Polynomials  
 
 

11.6 

 

Definition :   The Chebyshev polynomials { })(xTr  is a set of orthogonal polynomials defined on  
[– 1, 1]    with weight function  

                               ( )
2

1

1
w x

x
=

−
.   

 
Theorem 11.1 A sequence on [– 1, 1]  given by      for , can define ( ) cos( cos )nT x n ar x= 0n ≥

the Chebyshev polynomials. 
 

Proof  (Hint)   To prove the theorem, we only need to show that 
            

                                  
1
1 2

0       ( ) ( )
,        

0      . 1
n m

n m
n mT x T x

T T dx
n mx−

⎧= ≠⎪⎪= ⎨⎪≠ =⎪⎩−
∫  

     
Generation of Chebyshev Polynomials 
 

a) By using general recurrence relations for orthogonal polynomials – See property (3) of 
orthogonal polynomials.  

 
b)  By using recurrence relations for Chebyshev polynomials 

  
                                    T x T x x T x xT x T x nn n n0 1 1 11 2( ) , ( ) , ( ) ( ) ( )= = = 1.− ≥+ −     for  

3 x

,

 
 

Proof     (exercise) 
 
Sequence of Chebyshev Polynomials 
          

( )2 2
0 1 2 1 0 3 2 11,     ,      2 2 1,      2 2 2 1 4 3 ,  T T x T xT T x T xT T x x x x= = = − = − = − = − − = −  

 

Exercise   Show that    
 

               T x . x T x x x T x x x4
4 2

5
5 3

6
6 4 28 8 1 16 20 5 32 48 18 1= − + = − + = − + −, ,              ..
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Expansion of a Function in terms of Chebyshev Polynomials 
 

A continuous function f(x) defined on [– 1, 1]  may be approximated in the weighted least squares 

sense, with weight function ( )
2

1

1
w x

x
=

−
,   by    

 

                                                             ( ) ( )
0

~
n

r r
r

f x a T
=
∑ x      

  

                                    

1
1 2

1
1 2

( ) ( )1      0 
,  1 where      

( ) ( ),  2 dx    1, 2, .... 
1

r

r
r

rr r

f x T x
dx r

f T xa
f x T xT T r

x

π

π

−

−

⎧⎪⎪ =⎪⎪⎪ −⎪= = ⎨⎪⎪ =⎪⎪⎪ −⎪⎩

∫

∫
 

 

So we write                    ( ) ( ) 0 1 1 2 2
0

1~ ' .......
2

n

r r n n
r

f x a T x a a T a T a
=

= + + + +∑ T  

 

with                                 1
1 2

( ) ( )2  
1

r
r

f x T x
a

xπ −
=

−
∫ dx    ( ' signifies a0 is to be halved). 

 

Example 11.7   Find the least squares linear fit to  f(t) = t2 on [0, 1] using ( )
2

1

1
w x

x
=

−
. 

Solution    

As     
( ) ( )1 1

2
a x b x

t
− + +

=     takes   [ ] [ ],     1,  1t a b x∈ → ∈ −    and    a = 0,   b = 1, 

let    1
2

xt +
= .   Then   f (t)  define a function  g(x)  on  [– 1, 1]. 

i.e.,                               ( )( ) ( ) [ ]
21  for   1,  1

2
xg x t f t x

⎛ ⎞+ ⎟⎜= = ∈ −⎟⎜ ⎟⎟⎜⎝ ⎠
. 

 

The least squares fit to g(x) using Chebyshev polynomials is 
 

                                             ( ) ( ) ( )0 0 1 1
1~
2

g x a T x a T+ x  

with ar determined by 

                                           
( ) ( )1

1 2

2

1
r

r
g x T x

a d
xπ −

=
−

∫ x                                

                           

( )2
1

0 1 2

2 21 1 1
1 1 02 2

12 1  
4 1

1 1 1 1 1         .
2 1 1 1

x
a dx

x
x x xdx dx dx

x x

π

π π π

−

− −

+
∴ =

−

+ +
= + =

− −

∫

∫ ∫ ∫ 2x−
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Let  , then sin  x θ=

           
( ) ( )

2
22 2

0 0 0

1 sin cos1 1 = 1 sin
cos

a d dθ
π πθ θ

θ θ
π θ π

+
= +∫ ∫ 2

0
3 cos 2 3
2 2

d
π θ

θ
⎛ ⎞⎟⎜= + =⎟⎜ ⎟⎟⎜⎝ ⎠∫ 4

 

 

Similarly we obtain 
 

   
( )2

1
1 1 2

12 1 
4 21

x xa d
xπ −

+
= =

−
∫ x  

 

         
( ) ( ) ( )0 1

1 3 1   ~
2 4 2
3 1             .
8 2

g x T x T

x

⎛ ⎞⎟⎜∴ +⎟⎜ ⎟⎟⎜⎝ ⎠

= +

x
 

 

As      f (t)   =   g( x(t) ),     ( ) ( )3 1 12 1 .  
8 2 8

f t t t= + − = −

j

 

Advantage of Chebyshev Least Squares Approximation 
 
 

The Chebyshev least squares approximation 

                                 
0

( ) =  ( )
n

n j
j

C x a T x
=
∑

to the function f(x) on [– 1, 1] is more useful than the Legendre least squares approximation, which 
is established by the following theorem 
 

 

Theorem 11.2   Let  f(x)  have  r  continuous derivatives on  [– 1, 1]  with   r ≥ 1,  then    

              
[ ]

( ) ( )
1,  1

lnmax ,       2n rx

B nf x C x n
n∈ −

− ≤ ≥  
 

  for a constant B dependent on f and r.  Cn(x) converges uniformly to f(x) as  
  provided f(x) is continuously differentiable. n → ∞

 
   Proof   See T. Rivlin, The Chebyshev Polynomials, John Wiley, 1974. 

 
Numerical Evaluation of  aj 
     

The coefficient  aj   is defined by                     

                     1
1 2

( ) ( )2 .  
1

j
j

f x T x
a d

xπ −
=

−
∫ x  

 

To evaluate aj  numerically, we firstly remove singularity in the integrand by letting  x = cosθ  and 
thus 

0
2 (cos )cos( ) .ja f jπ

θ θ
π

= ∫ dθ  
 

The mid-point rule or the trapezoidal rule can then be used for the evaluation of the above integral. 
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Chebyshev Algorithm for the Evaluation of Cn(x)   

Without converting to the form using x j, the Chebyshev algorithm evaluates  

through an iteration process as follows 
0

( ) =  ( )
n

n j
j

C x a T x
=
∑ j

  
Chebyshev Algorithm for Computing Cn(x) 
 

     

Set   
        
 
       

b
b
z x

n

n

+

+

=

=

=

2

1

0
0

2  
 

     For   j = n, n –1, ... 0  Do  
            1 2j j jb zb b a+ += − + j     

         ( ) ( )0 2 / 2nC x b b= −
 

Proof.  Hint: 1)  1 22j j j ja b xb b+ += − +   

2) ( ) 0

12

n

n j
j

a
C x a T

=
+ = ∑ j

=

 

3)  Find and use  
1

n

j j
j

a T
=
∑ ( ) ( ) ( )1 12 0j j jT x xT x T x+ −− +

 

Economization of Power Series 
 

Chebyshev polynomials can also be used to reduce the degree of an approximating polynomial 
with a minimal loss of accuracy. This is particularly useful when the approximating polynomial is 
a Taylor polynomial. 

 

A Taylor polynomial is very accurate near a point about which it is expanded, but poor when 
farther away from this point. For this reason, a high-degree Taylor Polynomial may be needed to 
achieve a prescribed error tolerance.  Chebyshev polynomial may be used to reduce the degree of 
the Taylor polynomial without exceeding the error tolerance. 

 

Example 11.8  Approximate ( ) xf x e=   on [– 1, 1] with error tolerance 0.05. 
   

  Solution   Taylor Polynomial: 

degree 3:  
2 3

3 1
2 6
x xP x= + + +                                  (11.5) 

                        
( ) ( )4 4

3 0.11
24 24

f x eR
ξ

≤ ≤ ≈    (Too large!) 

degree 4:  
2 3

4 1
2 6 24

4x x xP x= + + + +                               (11.6) 

                        4 0.023
120

eR ≤ ≈                (OK.) 
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Can we reduce P4 to degree 3 without exceeding the error tolerance? Yes, as shown below 
    

Since                               ( ) 4 2
4 8 8 1T x x x= − +  

      we have                         
4

2
4

1 1 1
24 24 8 8
x T x

⎛ ⎟⎜= + − ⎟⎜ ⎟⎟⎜⎝ ⎠

⎞ .                              (11.7) 

 

Thus substituting (11.7) into (11.6), we get 
 

    

2 3
2

4 4

3
2 4

3
2 4

4 4 4

1 1 1     1
2 6 24 8 8

191 13 1        
192 24 6 192

191 13 1   
192 24 6 192

x xP x T x

xx x T

xf P R x x T R

⎛ ⎞⎟⎜= + + + + + − ⎟⎜ ⎟⎟⎜⎝ ⎠

= + + + +

⎛ ⎞⎟⎜∴ = + = + + + + + ⎟⎜ ⎟⎟⎜⎝ ⎠

 

If we neglect the last term, then the error will be  

total 4 4
1 10.023 0.0283 0.05

192 192
E R T≤ + ≤ + = <  

Hence, on neglecting the last term, we obtain the 3rd degree polynomial 

( )
3

2
3

191 13
192 24 6

xP x x x= + + +  

with maximum error 0.0283 on [– 1, 1]. 
 

 
 

               Least Squares Approximation  using Maple/MATLAB  
 
 

11.7 
 

Least Squares Approximation using Maple  
 
The  Maple function  “LeastSquares()”  constructs a least-squares approximation to the 
points{ .  The syntax is } 1

( , ) N
i i i

x y
=

 

LeastSquares([x1,x2,…,xn],[y1,y2,…,yn], v, option) 
 

Notes:   A linear function in variable v  is returned unless the ‘curve = f’  option is provided 
(the unknown parameters to determine are the indeterminates in  f  different from v). A 
weight can be assigned to each data point by using the ‘weight = weightlist’ option 
where weightlist is a list containing n non-negative values. 

 

Example 1 
>  with(curveFitting): 
> y:=LeastSquares([0, 1, 2, 3], [1, 2, 3, 10], x); 

 

 

returns  a default function type with the form a*x+b: 
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1 14:
5 5

y x= − +  
 

Example 2 
 

> with(curveFitting): 
> y:=LeastSquares([0,1,2,3], [1,2,3,10], x, weight=[1,1,1,10]); 

 

gives 

            
47 253:
73 73

y x= − +  
 

Example 3 
 

> with(curveFitting): 
> y:=LeastSquares([0,1,3,5,6],[2,-1,-3,6,8],x,curve=a*x^2+b*x+c); 

 

 

returns a function in the form of  a*x^2+b*x+c  as follows: 
 

  

           2487 330 71:
273 91 21

y x x= − +  

 
Least Squares Approximation using MATLAB  
 

The MATLAB “polyfit( )” function finds the best coefficients of a polynomial that fits a set of 
data in a least-squares sense. The syntax is 

 
  p = polyfit(x,y,n) 

 
where  x and  y are vectors containing the x and  y  data to be fitted, and n is the degree of the 
polynomial to return.   For example, 

 
  >> x = [0  1  3  5   6]; 
  >> y = [2 -1 -3  6  8]; 
  >> p = polyfit(x, y, 3) 

         

        yields 
p =  
       -0.1500    2.1595   -6.5571   2.4762   

       
and  thus the least square polynomial is 

 

                   3 20.1500 2.1595 6.5571 2.4762.p x x x=− + − +
 

Note:  The result p (output of polyfit) is a row vector of length n+1 containing the 
polynomial coefficients in descending powers of x. 
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EXERCISES  11 

 
Q11. 1   The average scores reported by golfers of various handicaps on a par-four hole were as follows: 
 

                 Handicap      6   8    10   12   14   16   18   20   22   24 
      Average   4.6   4.8   4.6   4.9   5.0   5.4   5.1   5.5   5.6   6.0 
     

Find the least-squares line for this data using normal equations. (Ans:  y = 0.07x + 4.07) 
 

 
Q11. 2   Derive the normal equations for finding the coefficients of the least squares fit  
 

                f x a b x( ) e ,= + −
   to the data   { } ., 1

N
iii yx =    

In general, how to determine the coefficients ci of the least squares fit   

                                                   
f x c P xi i

i

N
( ) ( )=

=
∑

1         
where Pi are linearly independent functions. 

 
 

P AeMx=  for the data  Q1 Find a function of type  1. 3    
       

                  xi    1   2   3   4 
      yi     60  30  20  15 
     

using normal equations.   (Ans:  A = 84.8,  M = – 0.456) 
 

Q11. 4  Use orthogonal polynomials to find a least squares quadratic fit to 
 

        xi   – 2   – 1   0    1    2 
        yi   0.3   0.5   1    2    4.1 
 

    (Ans: y = 0.96 + 0.91x + 0.31x2 ) 
 

Q11. 5  Find the least-squares polynomial of degree two to fit  
 

      xi   – 3    – 2    – 1    0     1     2     3 
      yi   – 0.71  –0.01  0.51   0.82   0.88   0.81   0.49 
     

    (Ans:  y = 0.806 + 0.200x – 0.102x2  ). 
 

Q11. 6    Find the least-squares parabola for y(x) = x3 on the interval (– 1, 1).      (Ans:  3x/5 ) 
 

Q11. 7 Approximate y(x) = 4/(2 + x) in the interval (2, 6) by a least squares polynomial of degree five. 
Transform to the interval (– 1, 1) and use Legendre polynomials. 

 

Q11.8 Find the least squares parabola for y(x) = x3 on (– 1, 1) with weight function 
w x x( ) / ( ) /= −1 1 2 1 2 .  (Ans: 3x/4 ) 

 

Q11.9  Represent y(x)=exp(–x) by terms of its power series through x7. The error will be in the fifth 
decimal place for  x near one. Rearrange the sum into Chebyshev polynomials. How many terms 
can then be dropped without seriously affecting the fourth decimal place? Rearrange the 
truncated polynomial into standard form. (this is another example of economisation of a 
polynomial).    ( 1.266T0 – 1.1303T1 + 0.2715T2 –  0.0444T3 + 0.0055T4 – 0.0005T5 ) 
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Q11. 10  Economise the result    ln( )1
1
2

1
3

1
4

1
5

2 3 4+ = − + − +x x x x x x5  by rearranging into Chebyshev 

polynomials and then retaining only the quadratic terms. Show that the final result 

                                                          
ln( )1

1
32

11
8

3
4

2+ = + −x x x
   

has about the same accuracy as the fourth degree part of the original  approximation. 
 

 
_________________________________________________________________________ 
 
 

Programming 
 

Q11. 11 Write a program to establish a least squares polynomial of degree n to fit a set of data using 
normal equations. Hence solve Q11.1  and Q11.3  using the program. 

 

Program Structure 
 

1)  Write a subroutine to establish  Pn = a0 + a1 * x + ...  + an * x**n   
 

     SU                
BROUTINE LSPDEGN(M, X, Y, N, A) 

        M    = before entry, M must be set to the number of data points. 
                      X, Y  = before entry, (X, Y) must contain the data (xi, yi). 
                       N     = before entry, N must be set to the required degree of poly. 
        A  = on exit, A contains the coef. of polynomial  A(0) = a0, A(1)= a1 .... 
     Algorithm: 

 

        Call  FormCoef (M, X, Y, N, C, B)     – form normal equations C a = b 
                     Call LUFACT                      –  factor C into L and U matrices  
        Call SUBST         –  substitution to find solution a. 

 

     Subroutine  FormCoef (M, X, Y, N, C, B) 
                

 For l = 0 to 2n Do 

     
1

 
m

l
l i

i
s x

=
=∑  

 End Do 
 For k = 0 to n Do 

      
 b yk i

k

i

m
=

=
∑

1

xi

      For  j = k to n Do 
         Set   kj k jc s +=

         if (k≠ j)  set  jk kjc c=  
      End Do 
 End Do 

 

2)   Write a subroutine  ReadDat  to read data. 
3)   Write a subroutine OutPDat to print the results.  
 

Q11.12. Solve problems Q11.1 and Q11.5 using Maple/MATLAB built-in functions. 
 

_____________________________________________________________________________________ 
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CHAPTER 

12 
       The Eigenvalue Problem  

 
 

The solution to many physical and mathematical problems requires the calculation of eigenvalues 
and corresponding eigenvectors of certain matrices.  For matrices of order two or three, the 
eigenvalues and eigenvectors of the matrices can be easily determined analytically. However, for 
higher order matrices, one usually needs to determine the eigenvalues of the matrices numerically. 

 

In this chapter, we introduce various numerical methods for the determination of eigenvalues and 
eigenvectors of matrices. The rest of the chapter is organized as follows. 
 

Section 12.1  introduces some basic definitions and theorems providing the preliminaries 
for other sections. 

 

Section 12.2 introduces the Power method for finding the eigenvalue with maximum 
magnitude. 

 

Section 12.3  introduces various techniques for accelerating the convergence of the Power 
method. 

 

Section 12.4  presents the inverse Power method for finding the eigenvalue closest to any 
given value. 

 

Section 12.5 and Sections 12.6 presents the Jacobi’s method and Given’s method for 
finding all eigenvalues and eigenvectors of matrices. 

 

Section 12.7  shows how to find eigenvalues and eigenvectors using Maple/Matlab. 
 

Definition: (eigenvalue  λ and eigenvector x) 
 

   Let    be an   matrix,  be an  1  vector.A n n n× × x

  

the eigenvalue of ,
If   there exists  0,  such that  ,   then  

the eigenvector of  belonging to .
A

A
A

λ
λ

λ

⎧ =⎪⎪≠ = ⎨⎪ =⎪⎩
x x x

x
 

Direct Method for Calculating λ and  x 
 

Let  λ  be eigenvalue and  x be an associated eigenvector, then 
 

   ( )A Aλ λ= ⇔ −x x x=0I  .   
 

As , the above homogeneous system holds if and only if  0≠x
 

P A I( ) det( )λ λ= − = 0 , 
 

which is a polynomial equation of degree n and so it will have n roots λ1,  λ2, …  ,  λn (real or 
complex).     Hence,   
 

to calculate λ:                   solve det(A – λI) = 0 for λ; 
 

to calculate x associated with each λ:   solve (A  – λI)x = 0  for x. 
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Example 12.1  Find eigenvalues and their associated eigenvector of  matrix 
  

. ⎥
⎦

⎤
⎢
⎣

⎡
=

23
41

A

            Solution  

            . 21 4
( ) det( ) 3 10 0,        5, 2

3 2
P A I

λ
λ λ λ λ λ

λ

⎛ ⎞− ⎟⎜ ⎟= − = = − − = ⇒ = −⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
Hence there are two eigenvalues   and  .  For each eigenvalue, we can 

determine an associated eigenvector by solving 
1 5λ = 2 2λ =−

 

                                                           

(12.1) 

( )A Iλ− =x 0.

= =
 

Here we determine the eigenvector for λ .  Substituting λ  into (12.1) yields    
   

5 5

     1
1 2

2

4 4 0
        

3 3 0
x

x x
x
⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎟⎟ ⎟⎜⎜ ⎜⎜ ⎜⎜ ⎜⎜ ⎜

 ⎟⎟ ⎟= ⇒ =⎜ ⎟⎟ ⎟⎜⎟ ⎟⎟⎜−⎝ ⎠ ⎝ ⎠⎝ ⎠

=So, any vector of the form  is the eigenvactor of A associated with λ .                

For uniqueness, we can normalise the eigenvector  such that 

1
1

C
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

5

                     

2 11either  it has unit length in Euclidean norm       ;
12

1
or the element of largest modulus is unity                     .

1

ix
⎧ ⎛ ⎞⎪ ⎛ ⎞⎟⎪ ⎜ ⎟⎜ ⎟⎟⎪ ⎜ = ⎜ ⎟⎟⎪ ⎜ ⎜ ⎟⎟⎜ ⎟⎜⎪ ⎝ ⎠⎝ ⎠⎪⎪⎨⎪

 
⎛ ⎞⎛ ⎞⎪ ⎟⎜ ⎟⎜⎪ ⎟⎟⎜ = ⎜ ⎟⎪ ⎟⎜ ⎜ ⎟⎟⎪ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎪⎪⎩

∑ x

x

 
 

                Basic Definitions and Theorems for Eigenvlaue  and  Eigenvector 
 
 

12.1 

Some basic theorems for eigenvalues and eigenvectos. 
 

(1)     The eigenvalues of a symmetric matrix are real. 
 

(2)  A symmetric n n×  matrix with n distinct eigenvalues has n linearly independent    
eigenvectors. 

   

(3)  The number of linearly independent eigenvectors associated with an eigenvalue of  
multiplicity m is m or less. 

 

Gerschgorin's Discs Theorem  (for approximation of eigenvalues) 
 

  Let { }ijA a=  be an n × n matrix and Ci be the disc in the complex plane with centre at (aii, 0)  
 and   radius  

                         
( )1

n

i i
j j i

ja
= ≠

= ∑r .                                 (12.2) 

  If D is the union of all the discs Ci ( i =1 to n), then all the eigenvalues of A lie within D.  
 Moreover, the union of any k of the these discs that do not intersect the remaining (n – k)  
 must contain precisely k eigenvalues. 
 

Remark: From the data on each row of A, one can draw a Gerschgorin’s disc. 
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Example 12.2 Use Gerschgorin's Discs Theorem to find bounad for the eigenvalues of  
 

1 2 1
2 7 0
1 0 5

A
⎡ ⎤−⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

Solution  10  As A is symmetric, all the eigenvalues of A are real. 
 

            20  The  Gerschgorin’s Discs are  

 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7  8  9

 

          

1 2 1 3

7 2 0 2

5 1 0

λ

λ

λ

− = + − =

− = + =

+ = − + =1

 

 

From 10 and 20, each of the following  
intervals  contains one eigenvalue :                  Figure 12.1 Gerschgorin's discs for example 12.2  

  

   [– 6, – 4],  [– 2, 4]  [5, 9]. 
         

 
 

                The Power Method 
 
 

12.2 
 

In many cases, we require only one eigenvalue or eigenvector of the matrix A. For example, to 
analyse the convergence of the iterative methods for solving Ax = b, we only need to calculate the 
eigenvalue with maximum modulus of the matrix A. 
 

 

In this section, we introduce the Power Method, which is an iterative technique for finding the 
dominant eigen-solution (λ1, x1) of a matrix, where  λ  is the eigenvalue with maximum 
magnitude and  x1 is the associated eigenvector, i.e. 

1

 

                                    1 2 3  ...... nλ λ λ λ> ≥ ≥ ≥ .                                         (12.3)   
 

It is also assumed that the eigenvectors of A are linearly independent and that they are normalised 
so that their largest element is unity. 

 

Numerical Algorithm of the Power Method    
       

Let A be an  n  matrix. To find  λ1 and  x1,     n×
 

(1) Choose an  n  column vector z(o) whose largest element is unity; × 1
 

(2) 

( ) ( 1)

( )
( )Perform iterations     for 1, 2, ...

k k

k
k

k

A
k

μ

−⎧⎪ =⎪⎪⎪ =⎨⎪ =⎪⎪⎪⎩

y z

yz
                                                     (12.4) 

until convergence is achieved, where μk  is the element of y(k) with largest modulus. 
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Remark:   1
( )

1
As  ,    

 
k
kk

μ λ⎧ →⎪⎪→∞ ⎨⎪ →⎪⎩z x
 

where  is the dominant eigenvlaue, and   is the associated eigenvector with the 
element of largest modulus being one. 

1λ 1x

 
Example 12.3    Find the dominant eigen-solution of the following matrix using the power method. 

 

                                   
2 1 0

1 2 1
0 1 2

A
⎡ ⎤−⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 . 

Solution      

10   Choose ( )0
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

z  

20   Perform iterations for k=1, 2, 3,… 

                                                  

( ) ( )

( )
( )

1k k

k
k

k

A

μ

−=

=

y z

yz
   

                    where := element of kμ
( )ky with largest modules.   

 

( ) ( )

( )
( )

1 0

1
1

1 2
1

1 1
2

2 1 0 0 1
For 1, 1 2 1 1 2

0 1 2 0 1
                   2

                   1

k A

μ

μ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=−

⎡ ⎤−⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

y z

yz

 

 

( ) ( )

( )
( )

1
2

2 1

1
2

2
2
32

2

2 2
3

2 1 0 2
For 2, 1 2 1 1 3

0 1 2 2

                  3

                  1

k A

μ

μ

⎡ ⎤⎡ ⎤− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = = − =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦
=−

⎡ ⎤−⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

y z

yz

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎣ ⎦
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 ( ) ( )

7
3

3 2 1
3

7
3

For 3,k A

⎡ ⎤
⎢ ⎥
⎢ ⎥= = = −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

y z , 3
10  
3

μ =−  

 
Continuing on, we obtain the following sequences of  μk and z(k):       

 
:    2, 3, 3.3333, 3.4000, 3.4118, 3.4138, 3.4142;kμ − − − − − − −  

 

( )

21
32

1 2
2 3

0 0.7071 0.7071
:    1 , 1 , 1 , ..., 1 , 1 .

0 0.7071 0.7071

k

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡− − −⎢ ⎥⎢ ⎥ ⎤
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥ ⎢− − − −⎢ ⎥⎢ ⎥ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

z  

 

As the sequences have converged, we have   

               1 1

0.7071
3.4142, 1

0.7071
λ

⎡ ⎤−⎢ ⎥=− = ⎢ ⎥
⎢ ⎥−⎣ ⎦

x . 

Convergence Test 
 

 We usually stop computation and let ( )
1 1,     k

kλ μ= =x z  if  
10  The size of  converge, i.e.,  1λ

1

1
Tolk k

k

μ μ

μ
−

−

−
< .                                                       (12.5) 

20     The element with maximum modules occurs at the some position of the eigenvector at 
any two consecutive iterations. 

 
Analysis of the Power Method 
 

In the following we prove  1
( )

1
  as  .k

k kμ λ⎧ →⎪⎪ →∞⎨ →⎪⎪⎩z x
 

Proof  
 

It has been assumed that the normalised eigenvectors of A, {x1, x2,..., xn), are linearly 
independent, so 

                                                                               (0)
N

i i
i
α=∑z x

From (12.4),   

(1) (0) ,i i i i i
i i

A Aα α λ= = =∑ ∑y z x x
 

(1)
(1)

1 1
.i i iα λ

μ μ
= = ∑ xyz

 
 

2
(2) (1)

1 1
,i i i i i iA

A
α λ α λ
μ μ

= = =∑ ∑x x
y z     

2(2)
(2)

2 1 2
.i i iα λ

μ μ μ
= = ∑ xyz  
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In general           
( ) ( )1 1 1 2 2 1 2 1( )

1 2 1 2

/  ... + /
.

...  ... 

kkkk n n nk i i i

k k

λ α α λ λ α λ λα λ
μ μ μ μ μ μ

⎡ ⎤+ +⎢ ⎥⎣ ⎦= =∑ x xx
z

x
 

 

As      1 ,          as  ( )λ λ
α λ

μ μ μi
k

k

k
i< ∀ ≠ → →1

1 1
1 2

1z x
...

k ∞

→∞

.                           (12.6) 

 
Further as both z(k) and x1 are normalised vector with largest element unity, we have from 
(12.6) 

( )
1   ,   as   .k k→z x                                                 (12.7) 

 

α λ
μ μ μ

1 1
1 2

1
k

k
k

...
.    ,    as   → → ∞
                                     

(12.8)
   

 

Equation (12.8) implies that    

           (12.9) 1 2 1 1
+1 11

1 2 1 1 1

...                      as .         

...

k
k

kk
k k

kμ μ μ α λ μ λ
μ μ μ μ α λ +

+

⎧⎪ =⎪ ∴ = →∞⎨⎪ =⎪⎩
 

 

                Acceleration Techniques for the Power Method 
 
 

12.3 

In the power method, rate of convergence is governed mainly by λ2/λ1. Thus, if λ λ2 1≈ , the rate of   
convergence is very slow.  Fortunately, various techniques are available to accelerate the rate of 
convergence. 

 
Aitken’s Δ Process 2

 

This process can be used to accelerate the convergence of a linearly convergent iteration scheme  
 

                        xn g xn+ =1 ( )                                                           (12.10) 
 

Method:  generate the following sequence using both (12.10) and Aitken’s  formula (12.11):   
 

x x x x x x x x x x1 2 3 4 5 6 7 8 9 10, , , , , , , , , , . . .  
 

where  xi is obtained from (12.10)  and xi  is obtained from (12.11) 
 

                                       

( )
x x

x
x

n n
n

n
+ +

+= −3 2
1

2

2
Δ

Δ                                    
(12.11)

 
in which 

                    Δ Δx x x x x x xn n n n n n n+ + + + += − = − +1 2 1 2 12, .    2  
 

Remark:  The sequence generated by (12.11) converges faster than the sequence generated by 
(12.10).  More details of Aitken’s process can be found in Section 2.7 2Δ
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Application to The Power Method 
 

Starting from z(0), generate {y(k), μk, z(k)}  using both the power method (12.4) and the  process 
(12.12) in the order as shown below. 

2Δ

 

            

( )( ) ( )

(0)

(1) (1)
1

(2) (2)
2

(3)
3

(4*) (4) 2
4

(5) (5)
5

(6)
6

(7*) (7) 2
7

Formulae for 

  0       

1                 P.M.

2 P.M.

.M.

.M.

.M.

y

3 P

4    process

5 P

6 P

7    process

kk k
kk μ

μ

μ

μ

μ

μ

μ

μ

Δ

Δ

y z

z

y z

y z

y

y z

y z

y

y z

 

 
where  y(k) are calculated from the power method (P.M), while y(k*) are determined by the 

process, eg.              
2Δ

                               

2(3) (2)
(4*) (3)

(3) (2) (1) .
2

i i
i i

i i i

y y
y y

y y y

⎡ ⎤−⎢ ⎥⎣ ⎦= −
− +

                                              (12.12) 

Shift of Origin 
 

From the definition of eigenvalue and eigenvector, it can be proved that if λ  is an eigenvalue of 
Α and  is the associated eigenvector, then λ − b is an eigenvalue of A − bI  and x is its 
associated eigenvector. 

0≠x

 
Now suppose that the eigenvalues of A are     λ λ λ λ1 2 3> ≥ ≥ ≥  n. . . ,                             (12.13) 
then the eigenvalues of A – bI  are                λ λ  1 2, ,  ..., .nb b bλ− − −

 
As the modulus of  λi – b  is the distance from λi to b (as shown in the figure below), the dominant 
eigenvalue (with maximum magnitude) of A – bI must be either λ1 – b or λn– b. We study these 
two cases in the following. 

 
 

 
1)   For the case  λ λ1 − > −b n b  , following the same procedure as that for deriving (12.6), we 

obtain 

                             
( )

k

n
n

n
k

k b
b

b
b

b

μμμμ

λ
λ

α
λ
λ

ααλ

...

 ... 

321

1
2

1

2
1111

)( ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+−

=

xxx

z  

 λn  λn–1 b  λ1 λ2
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( )

.   as     
...

   1
21

11(k) ∞→
−

→ k
b

k

k

xz
μμμ
αλ

   

  

                                              ∴ → → −        (k)
kz x1 1, (μ λ b).   

 

Thus, the rate of convergence depends mainly on  
⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−

=
b
b

b
b

v n

11

2  ,max
λ
λ

λ
λ

. 

 

It can be noted that the minimum of v occurs when b is at the mid point of  the interval [λn, λ2], 
i.e.        

                                                        b = (λn + λ2)/2                                                     (12.14) 
         

 

which is the optimal choice of  b for calculating λ1. 
 

 

2)   For the case λ λn b− > −1 b ,  similar to the analysis in 1), we obtain   
 

   z x(k)
k       as  → → − →1 , ( ) ∞μ λ n b k . 

 

Similarly, the fastest convergence rate is achieved if  
             

                                                b = (λn-1 + λ1)/2                                                  (12.15)
  

which is the optimal choice b for calculating λn. 
 
Remark:  Combined with the shift of origin, the power method can be used to determine λ1 and λn 

where λ1 > λ2 > … > λn.   To determine λ1 , choose b=( λn+ λ1)/2; to determine λn , 
choose  b=( λn-1+ λ1)/2. 

 

Example 12.3  Given   , 
4 6 5
6 3 4

5 4 3
A

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠
 

apply the power method to A – bI using an ‘optimal’ value for b to find the dominant 
eigenvalue of A. 

 

Solution  
   

Firstly, use Gerschgorin's discs theorem to get a rough estimate of the eigenvalues of A. As the 
matrix is symmetric, all eigenvalues are real.  Together with the Gerschgorin’s discs theorem, 
we have 3 real eigenvalues respectively in the range [-7,15], [-7, 13], [-12,6] as shown in 
Figure 12.2. 

 
                   

 –15  –10  –5

 –7

 –7

–12  –3

0 5  10 15

 6
3

  4

13

15

 
 
 
 
 
                          Figure 12.2 Estimate of eigenvalues using Gerschgorin’s discs theorem 
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As an approximation, let         λ1 = 15,    λ2 = 6,    λ3 = −12.  
 

Το find the actual value of λ1 , choose ( ) ( )2 3
1 1 6 12 3
2 2

b λ λ= + = − =−  
 

Construct   B = A – bI = A + 3I =  
7 6 5
6 6 4

5 4 0

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
     

The eigenvalues of B will then be    
 

                                          λ1 − b = λ1 + 3  ≈ 18     
 

                   λ2 − b = λ2 + 3 ≈   9  
    

                    λ3 − b = λ3 + 3  ≈ −9. 
  

Thus the dominant eigenvalue of B is expected to be  λ1+3 and so, if we apply the  Power 
method  to B, it is expected that 
 

                                     μk   →  λ1 + 3 
 

                        z(k) →   x1        (where x1 is the eigenvector of A associated with λ1) 
 

Now apply the Power method to B. 
 

Choose       ( )0
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

z  

( ) ( )

( )
( )

1 0

1

1
1

1

 7 6 5 0 6 
1,       6   6 4 1   6 

 5   4 0 0   4 
              6

1
              1

0.6667

k B

μ

μ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=−

⎡ ⎤
⎢ ⎥
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦

y z

yz

 

k = 2, 
 

                k = 16,  μ16 = 12.6219,   z(16) = (1,  −0.8247, 0.1348)T

                k = 17,  μ17 = 12.6221,   z(17) = (1,  −0.8247, 0.1348)T

 
Hence,       λ1 + 3 = μ17 = 12.6221   ⇒    λ1 = 9.6221 

                                 x1 = z(17) = (1,  −0.8247, 0.1348)T. 
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Rayleigh Quotient 
 

When the eigenvalue alone is required, the formula 
 

              
( 1) ( )

( 1)
( ) ( )    ( 0, 1, 2, ...)
k T k

k
k T k k
+

+ = =
y zq
z z

.                                                 (12.16) 
 

can be used in conjunction with the power method to give a sequence of approximations           
q(1), q(2), ...,  which converges more rapidly to λ1. 
 

 
 

                The Inverse Power Method 
 
 

12.4 
 

T
  

he method presented in this section can be used to find  

(a)  the eigenvalue of A with least modulus and its associated eigenvector; 
 

(b)  any eigenvalue of A closest to a given value p and its associated eigenvector. 
 

The idea behind the method is to construct a new matrix B such that the dominant eigenvalue of B 
is related to the eigenvalue of A to be determined. Then apply the power method to B to find its 
dominant eigenvalue and consequently the related eigenvalue of A. 

 
Find the Eigenvalue with Least Modulus  and its Associated Eigenvector 
 

Construct B =A-1.  Then it can be shown, from the definition of eigenvalue and eigenvector, that  
 

                                      
1 1eigenvalue of   ,     i.e    ( )= .

eigenvalue of  ( )
eigenvector of   = eigenvector of .                  

B B
A A

B A

λ
λ

⎧⎪⎪ =⎪⎪⎨⎪⎪⎪⎪⎩

 

 

Suppose that the eigenvalues of  A  (λi) are such that       
 

 λ λ λ λ λ1 2 3 1          ≥ ≥ ≥ ≥ − >... n n , 
 

then the eigenvalues of B = A-1 (1/ λi ) are such that 
      

1

1

1

2

1

3

1

1

1
λ λ λ λ λ

          ≤ ≤ ≤ ≤
−

<...
n n

. 

   

Obviously, if the eigenvalue of A with least modulus and its associated eigenvector are λn and xn,  
then the dominant eigen solution of B is {1/λn , xn}. Thus applying the power method to B, we can 
find its dominant eigen-solution,  

  
( )1 ,   k

k n
n

μ
λ

= =x z ,      (for k sufficiently large) 

     
                                                                                                                                                                   

Then it is a simple matter to find  {λn, xn} from the above formulae. 
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Find the Eigenvalue Closest to a Given Value p and its Associated Eigenvector  
 

To find a single eigenvalue λ* closest to p and its associated eigenvector x*,  construct  B = A – pI.  
It can be shown that  
 

                       
1 1

1

1 1eigenvalue of     ,     i.e    ( ) .
(eigenvalue of  ) ( )

eigenvector of   eigenvector of .

i
i

B B
A p A

B A

λ
λ

− −

−

⎧⎪⎪ = =⎪⎪ − −⎨⎪⎪⎪ =⎪⎩

p  

 

As λ* is the eigenvalue closest to p,  we have *    (for *, 1, 2, ..., )i ip p iλ λ λ λ− < − ≠ = n .  
Hence, the dominant eigen solution of B –1 is {1/(λ* – p), x*}, which can be determined by the 
power method applied to B –1, i.e. 

                                                                                                               

              ( )1 ,   *
*

k
kp

μ
λ

= =
−

x z         (for k sufficiently  large) 

 
From the above formulae, it is then a simple matter to determine λ* and  x*.  To find the dominant 

eigen-solution of B –1, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

* ,
*
1 x

pλ
, we may directly apply the power method to B –1, i.e.   

 

 perform iteration             (12.17) 
( ) 1 ( 1)

( ) ( )
  ( 1, 2, ... ),

/

k k

k k
k

B
k

μ

− −⎧⎪ =⎪⎪ =⎨⎪ =⎪⎪⎩

y z

z y
       where μk is the element of y(k) with largest modulus.  

As       
( )

1
*,    
*.

k

k

pk
μ

λ
⎧⎪⎪ →⎪⎪ −→∞ ⎨⎪⎪⎪ →⎪⎩z x

 

 
To avoid actually calculating B –1, we can use 

 

                       
( ) ( 1)

( ) ( )
  ( 1, 2, ... ).

/

k k

k k
k

B
k

μ

−⎧⎪ =⎪⎪ =⎨⎪ =⎪⎪⎩

y z

z y
 

As the first set of equations in the above system needs to be solved many times, the LU 
decomposition method is usually used for the solution. Let B=LU, then 
 

                                                               (12.18) 

( ) ( 1)

( ) ( )

( ) ( )

    ( 1, 2, ... ).

/

k k

k k

k k
k

L

U k

μ

−⎧⎪ =⎪⎪⎪⎪ = =⎨⎪⎪⎪ =⎪⎪⎩

v z

y v

z y



214   

Example 12.4  Given ,  find the eigenvalue closest to –2 and its associated  

eigenvector,  take  . 

2 3 0
3 1 1

0 1 2
A

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠

( )0
1
1
1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠

z

Solution   For   p = –2,  
 

Construct   B  =  A – pI  =  A + 2I   =   3 3
4 4

84
3 3

4 3 0 1 0 0 4 3 0
3 3 1 1 0 0 1

0 1 4 0 1 0 0

⎛ ⎞⎛⎛ ⎞− −⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟ ⎜ ⎜− = − ⎟ ⎟⎜ ⎟ ⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎜⎟ ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜⎟⎜⎜ ⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎝

⎞

⎠

. 

 

Suppose the eigenvalues of A are λi (A),  i = 1, 2, 3.  Then, the eigenvalues of  B –1 are 
     

( )
1

2i Aλ +
   ( i = 1, 2, 3). 

 

Thus, if  λ  is the eigenvalue of A closest to –2, then the eigenvalue of B with maximum 

modulus is  1
2λ +

.  Hence if we apply the power method to B –1, it is expected that  

             
( )

1
2

.

k

k

μ
λ

→
+

→z x

 

 

Now, apply the Power method to B –1 to find μk and z(k) by using 
 

                  either        or           
( ) 1 ( 1)

( ) ( ) /

k k

k k
k

B

μ

− −⎧⎪ =⎪⎪⎨⎪ =⎪⎪⎩

y z

z y

( ) ( 1)

( ) ( )

( ) ( )

    ( 1, 2, ... ).

/

k k

k k

k k
k

L

U k

μ

−⎧⎪ =⎪⎪⎪⎪ = =⎨⎪⎪⎪ =⎪⎪⎩

v z

y v

z y

In the following, we use the 2nd set of formulae 

 k =1,    

( )

( )

( )

( )

1
1
1 13 7

24 4
4 41
3 33

1 0 0 1 1
1 0 1               

0 1 1

v

v

v

⎡ ⎤
⎡ ⎤ ⎛⎢ ⎥ ⎡ ⎤ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎟⎢ ⎥ ⎜ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎟⎢ ⎥ ⎜− = ⇒ = ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎟⎜− ⎟⎜⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

v

⎞

 

     

( )

( )

( )

( )

1
51
2

1 13 7
24 4

8 4 11
3 33

4 3 0 1
0 1          3
0 0

y

y

y

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎛⎢ ⎥− ⎟⎜⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎟⎜ ⎟⎜⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎟⎜= ⇒ = ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎟⎜− − ⎟⎜⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

y

2

⎞
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                                           ( )
( )

1
5
61

1

1 1
6

   3

    1

μ

μ

∴ =

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜− ⎟⎜⎝ ⎠

yz
 

 

 k = 2,    v(2) → y(2) →μ2 → z(2)   
 

k = 4,  μ4 = 3.3507,   z(4) = (0.0815, 1,  −0.2701)T

 

k = 5,  μ5 = 3.3508 ,   z(5) = (0.0815, 1,  −0.2701)T          
 

Τhe sequence μk and z(k) both converge and so 

5
1 3.3508       1.702

2
μ λ

λ
= = ⇒ =−

+
, 

( )5 T (0.0815, 1, 0.2701)= = −x z . 
 
 
 

                Methods for a Complete Eigen System 
 

 

12.5 
 

When all the eigenvalues of a matrix A are required, methods based on similarity 
transformations are usually employed. These methods make use of an orthogonal matrix P to 
transform A into a similar matrix B which is of simpler form. In this section, we first introduce 
some basic concepts, then present a method based on similarity transformation, namely the 
Jacobi’s method, for finding eigenvalues and eigenvectors. 
 

Basic Concepts of Similarity Transformation 
 

Definition  (Orthogonal Vectors):  A set of vectors { y1, y2, ….., yn } is said to be 

                             if  0  
  if , in addition,  1.

T
i j

T
i i

i j⎧⎪ = ∀ ≠⎪⎨⎪ =⎪⎩

orthogonal y y
orthonormal y y

Definition  (Orthogonal Matrices):  An  n n×  matrix P is said to be orthogonal if     
 

                                         P P I P PT T= ⇔ = −      1. 
 

Definition (Similar matrices):  Two n n×  matrices, A and B, are said to be similar if there exists a 
non-singular matrix S, such that   

 

                                     S –1AS = B. 
 

Definition (Similarity transformation):  The process which transforms A to a similar matrix B             
(via B = S –1AS) is called  similarity transformation. 

 

Property of Similarity Transformation 
 

The eigenvalues of a matrix are invariant under a similarity transformation. More   
specifically, suppose B is obtained from  A  by a similarity transformation  B = S –1AS,  then if  
{λ, x} is an eigen solution of  A,  {λ, S –1x} is the eigen solution of  B. 
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Methods based on Similarity Transformations 
 

 

1) Transform A into a similar matrix B which is of simpler form B = P –1AP using an  
orthogonal matrix P.  

2) Determine the eigenvalues and eigenvectors of B  and consequently  of A  using the 
property  of  similarity transformation. 

 

The Theoretical Basis of Jacobi's Method 
 
 

Theorem 12.1 If A  is symmetric  (AT= A), then there exists  an orthogonal matrix P     
such  that  PTAP=D  where D  is a  diagonal matrix.  A and D are similar 
and hence  

            (1)  eigenvalues of A (λi) = eigenvalues of D [ λi(D)] =di   
                 

            (2)  eigenvectors of A = Columns of P .          
Proof 
 

(1)  First prove λi(A)] =di .    
As  A and D are similar,  λi(A) =λi(D).  The characteristic equation for D is   

                                                       
1

( ) ( ) 0
n

i i
i

p D I dλ λ λ
=

= − = − =∏   which gives . ( )i iD dλ =

(2)  Now prove that the eigenvectors of A are the columns of P.      

As TP AP D= ,  we have  [ ] [ ]
1

2
1 2 1 2     ...     ... .n n

n

AP PD A P P P P P P

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⇔ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 [ ] [ ]1 2 1 1 2 2        ...     ...              n n n iAP AP AP P P P AP Pλ λ λ λ∴ = ⇒ i i=  
 

which implies that Pi (the ith column of P) is the eigenvector associated with λi.   
   The proof is completed.                                                                                                          � 

 
The Jacobi's method is based on the above theorem and can be used to find all the eigenvalues 
and eigenvectors of a symmetric matrix A. The method transforms A (n n× ) into diagonal form by 
annihilating its off-diagonal elements one by one through a finite number of similarity 

transformations using plane rotation matrices  Rpq (n n× ),   i.e.  
ˆvia .
TR ARA D⎯⎯⎯⎯→  Thus, according 

to the above theorem, the eigenvalues of A are the diagonal elements of the diagonal matrix, i.e.   
λi = di, and the eigenvector associated with λi is the ith column of . The key question is how to 
eliminate the off diagonal elements of A.  

R̂

 

In the following, we introduce the plane rotation matrix followed by its properties, then present a 
theorem which describes how to eliminate an off-diagonal element of a matrix by using the plane 
rotation matrices followed by the proof which makes use of the properties of the plane rotation 
matrices. 

 

Definition  (Plane rotation matrices):  A plane rotation matrix is basically an unit matrix except for 
the elements    i.e., cos ,pp qqr r cθ= = = sin ,     sin ,qp pqr s rθ θ= = =−
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                                                         (12.19) 

1 0 0 0

0 0
 

0 0

0 0 0

pq

c s
R

s c

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠1

n

pn

n

nn

 

Properties of Plane Rotation Matrices Rpq(θ ) 
 

Premultiplication of A by  affects only the elements in rows p and q T
pqR

                           

11 1 1 1

1

1

1

1 0 0 0

0 0

0 0

0 0 0 1

p q

p pp pq
T
pq

q qp qq q

n np nq

a a a a

a a a ac s
R A

s c a a a a

a a a a

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

                                    

11 1 1 1

1

1

1

p q

p pp pq p

q qp qq q

n np nq n

a a a a

a a a a

a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

n

n

n

n

,   

where       
                    ,   .  pj pj qj qj pj qja ca sa a sa ca= + =− +                                                   (12.20) 

 

Postmultiplication of a matrix  by pqR  affects only the elements in columns p and q of the matrix. 

                            ( )

11 1 1 1

1

1

1

1 0 0 0

0 0

0 0

0 0 0

p q n

p pp pq pn
T
pq pq

q qp qq qn

n np nq nn

a a a a

a a a a c s
R A R

a a a a s c

a a a a 1

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

 



218   

      

* *
11 1 1 1

* *
1

* *
1

* *
1

p q

p pp pq

q qp qq

n np nq

a a a a

a a a a

a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

n

pn

qn

nn

 

*where 
  ,  ,   

*           

a ca sa aip ip iq pi
i p q

a sa ca aiq ip iq qi

= + =
≠

=− + =

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

 

          
* 2 2

  
* 2 2

a ca sa c a csa s app pp pq pp pq qq

a sa ca s a csa c aqq qp qq pp pq qq

= + = + +

=− + = − +

2

2
 

       *a sa capq pp pq=− +    

              ( ) ( )2 2 2
symmetric

2
qq pq qq pp qp

a aij ji
csa s a c app qp qp csa c s a cs a a a

=
=− − + ⎯⎯⎯⎯⎯→+ − + −←⎯⎯⎯⎯⎯ *=

                                                                                                                                          (12.21) 
Remark:   In the transformation *A = ,  the new matrixT

pq pqR AR *A is essentially the same as A  
except for the  elements  

*

* 2 2

* 2 2

* *

,

2

2

.

ip ip iq pi

iq ip iq qi

pp pp pq qq

qq pp pq qq

pq qp

a ca sa a
i p q

a sa ca a

a c a csa s a

a s a csa c a

a a

⎫⎪= + = ⎪⎪ ≠⎬⎪=− + = ⎪⎪⎭
= + +

= − +

=  

 

Theorem 12.2 (Property of Rpq) 
 

           For   
1 21 tan      if 

2

                              if       (take its sign to be that of ) 
4

pq
pp qq

pp qq

pp qq pq

a
a a

a a

a a a

θ
π

−
⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟⎪ ⎜ ≠⎟⎪ ⎜ ⎟⎜⎪⎪ − ⎟⎜⎝ ⎠= ⎨⎪⎪⎪± =⎪⎪⎪⎩

 

           the similarity transformation A R ARpq
T

pq
* =  will annihilate the element apq,    i.e.   a a . pq qp

* *= = 0
 

Proof  To annihilate the element in position ( p, q) through similarity transformation A T
pqR pqR ,   

 let   ,  which, from (12.21), requires            ( )* 0a pq θ =
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( ) ( ) ( )2 2 0      2cos 2 sin 2pq qq pp pq pp qqc s a cs a a a a aθ θ− + − = ⇒ = −  

1 21 tan      if    
2

1                         if    
4

pq
pp qq

pp qq

pp qq

a
a a

a a

a a
θ

π

−
⎧⎪⎪ ≠⎪⎪ −⎪=⎨⎪⎪⎪± =⎪⎪⎩

 

The proof is complete.                                                                                                            � 
            

Jacobi’s Iteration Process 
 

The Jacobi process is an iteration process which sets one off-diagonal element (with maximum 
modulus) to zero each cycle using the plane rotation matrix (12.19) with the angle determined by 
theorem 12.2. 

 
 

Cycle 1    ° Locate element  with maximum modulus in A then determine  ( < ) pqa p q 1 pqR R= ; 

        ° . (1) 1
1 1Perform similarity transformation     such that  0T

pqA R AR a= =

Cycle 2    ° Locate element    with maximum modulus in  ( < )pqa p q (1)A  and  then  determine 

2 = ;pqR R  

        ° Perform similarity transformation (2) (1)
2 2 2 1 1=  T T T

2A R A R R R AR R= such that   (2) 0.pqa =

If convergence is reached after k iterations, i.e. ( )max k
ij

i j
a T

≠
≤ ol  ,  we have  

                        ( )
2 1 1 2

ˆ ˆ... ...         or         = ,k T T T T
k kA R R R AR R R D R AR D= =  

                            where   . 1 2
ˆ

kR R R R=
 

As   . . . . . . ,R R R R R R R R IT
k
T T T

k= 2 1 1 2 =     A and D are similar and thus based on theorem 12.1 
a)    Eigenvalues of A = eigenvalue of D,  i.e.   λ i id=  
b)     Eigenvectors of A = columns of ,   i.e. , where  is the ith column vector of                

   

R̂ ˆ
i R=x i iR̂

1 2
ˆ ... .kR R R R=

 

Example 12.5  Find the complete eigen-solution of  
10 3 2
3 5 1 .
2 1 0

A
⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

Use 5 decimal places and terminate iteration when the magnitude of each off-diagonal 
element of  A(k) does not exceed 0.0001. 

 

Solution  
  

For simplicity, throughout the computation, any element with magnitude less than 0.0001 are 
set to zero.  Use Jacobi’s iteration process to reduce A to a diagonal matrix. 

Step 1.  The element of A(0) (A) with maximum modulus and above the diagonal is in 
position  (1, 2),  i.e.,   p = 1,   q = 2,   
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1 12

0
   0

0 0 1

c s
R R s c

⎡ ⎤−⎢ ⎥
⎢ ⎥∴ = = −⎢ ⎥
⎢ ⎥
⎣ ⎦  

where θ  is determined by     

      1 1 112

11 22

2 21 1 1 2 3tan tan tan 0.43803
2 2 2 10 5

pq

pp qq

a a
a a a a

θ − − −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞×⎟⎜ ⎟⎜ ⎟⎟ ⎜⎜ ⎟= = = =⎜ ⎟⎟ ⎜⎟⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎜ ⎝ ⎠− − −⎟⎜ ⎝ ⎠⎝ ⎠

, 

 c = cosθ  = 0.90559,   s = sinθ =0.42416. 
 

Hence, 

1

0.90559 0.42416 0 10 3 2 10.32838 4.83757 2.23534
 0.42416 0.90559 0 3 5 1 1.52483 3.25547 0.05727

0 0 1 2 1 0 2 1 0

TR A
⎡ ⎤ ⎛ ⎞ ⎡ ⎤⎟⎜⎢ ⎥ ⎢⎟⎜ ⎟⎜

⎥
⎢ ⎥ ⎢⎟= − = −⎜ ⎟ ⎥
⎢ ⎥ ⎢⎜ ⎟⎜ ⎟ ⎥
⎢ ⎥ ⎢⎟⎜⎜⎝ ⎠ ⎥
⎣ ⎦ ⎣ ⎦

1

⎤
⎥
⎥
⎥
⎥
⎦

 

                                                   

( )1
1 1

10.32838 4.83757 2.23534 0.90559 0.42416 0
1.52483 3.25547 0.05727 0.42416 0.90559 0

2 1 0 0 0

TA R AR
⎡ ⎤ ⎡ −⎢ ⎥ ⎢
⎢ ⎥ ⎢= = −⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

 

                                                                  

11.40518 0 2.23534
0 3.59489 0.05727

2.23534 0.05727 0

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Step 2   The element with maximum modulus in  A(1) is in position (1, 3), so we choose  

  p = 1, q = 3,  

                            2 13

0
   0 1 0

0

c s
R R

s c

⎡ ⎤−⎢ ⎥
⎢ ⎥∴ = = ⎢ ⎥
⎢ ⎥
⎣ ⎦

,  where θ is determined by 

1 1 113

11 33

2 21 1 1 2 2.23534tan tan tan 0.18679
2 2 2 11.40518 0

pq

pp qq

a a
a a a a

θ − − − ⎛ ⎞×⎟⎜ ⎟⎜ ⎟⎟ ⎜⎜ ⎟= = = =⎜ ⎟⎟ ⎜⎟⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎜ ⎝ ⎠− − −⎟⎜ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
  

Hence,                         2

0.98261 0.42416 0.18571
 0 1 0

0.18571 0 0.98261
R

⎡ ⎤−⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦
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                      ( ) ( )2 1
2 2

11.82777 0.01064 0
0.01064 3.59489 0.05627

0 0.05627 0.42246

TA R A R
⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
Remark:   The 2nd iteration has destroyed the zero element in position (1, 2). 

, 3 23

1 0 0 1 0 0
  0 0 0.99990 0.01401

0 0 0.01401 0.99990
R R c s

s c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢∴ = = − = − ⎥
⎢ ⎥ ⎢Step 3   p = , q = 2 3 ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

where       11 2 0.05627tan 0.01401
2 3.59481 ( 0.42246)

θ − ⎛ ⎞× ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠
 

( ) ( )3 2
3 3

11.82777 0.01064 0
0.01064 3.59567 0

0 0

TA R A R
1

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Step 4       p = 1 ,   q = 2 

θ  =  0.00129,    ( )4
11.82780 0 0

0 3.59567 0  
0 0 0.42325

A
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

, 

That is, after four iterations, A has been transformed to a diagonal matrix: 
 

                                  (4)
4 3 2 1 1 2 3 4

ˆ ˆT T T T TR R R R AR R R R R AR A= =
Hence,   

1°  eigenvalue of A = eigenvalue of A(4).  

                 ∴  λ1 = 11.82780,  λ2 = 3.59567 , λ3 = – 0.42325  

2°   eigenvector of A = column of    where =RR̂ R̂ 1 R2 R3 R4 ,  i.e.,    

R̂
0.90559 0.42416 0 0.98261 0.42416 0.18571 1 0 0
0.42416 0.90559 0 0 1 0 0 0.99990 0.01401

0 0 1 0.18571 0 0.98261 0 0.01401 0.99990

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    

   

⎡0.88929 0.42762 0.16222
0.41795   0.90386 0.09145
0.18573   0.01226 0.98251

⎤− −⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎣ ⎦

. 
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           Reduction of Symmetric Matrices intoTridiagonal Matrices-Given’s Method 
 
 

12.6 

Given’s method uses orthogonal rotation matrices to reduce A (symmetric) to a tridiagonal form 
whose eigenvalues can be determined by standard means. 

 

The tridiagonal form is achieved in a finite number of steps 
 

1 1

Rotation Matrices 1 2

1

1

n

n n

A

α β
β α

β
β α

−

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎯⎯⎯⎯⎯⎯→⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

    i.e.,  = Tridiagonal.           

 

2 1 1 2... ...T T T
kQ Q Q AQ Q Qk

Process and Formulae 
 

The process is to use rotation matrices Rpq(θ) in transformation R ARpq
T

pq  to remove elements other 
than tridiagonal elements one by one in a systematic order. In the process, we use Rpq(θ) to 
eliminate the element A(p-1)q. The sequence of rotation matrices Rpq(θ) used is shown as follows 
by (p, q). 

(2, 3), (2, 4),  (2, 5),  ... , (2, n)   –  Remove elements other than tridiagonal in row 1  
             at locations (1, 3), (1, 4), ...  

            (3, 4), (3, 5),  ... , (3, n)    –  Remove elements other than tridiagonal in row 2       
                                                              at locations (2, 4), (2, 5) , ...  

                          (4, 5), ... , (4, n)      –  Remove elements other than tridiagonal in row 3 
     at locations (3, 5), (3, 6), ...  

 

Step 1 –   Let Ao=A 
Step 2+  For each (p, q), calculate A R A Rk pq

T
k pq+ =1  (k = 0,1, ... ). 

To determine the value of θ  such that  ( )( )Ak p q+ − =1 1 0 , we first calculate 
(θ) and then set it to zero and solve for θ .  ( )( )Ak p q+ −1 1

11 1 1 1

1

1
1

1

1 0 0 0 1 0 0 0

0 0 0

0 0 0

0 0 0 1 0 0 0 1

p q n

p pp pq pn
T

k pq pq
q qp qq qn

n np nq nn

a a a a

a a a ac s c s
A R AR

s c a a a a s c

a a a a

+

⎛ ⎞⎛ ⎞ ⎛⎟⎜⎟ ⎟⎜ ⎜⎜⎟ ⎟⎜ ⎜⎜⎟ ⎟⎜ ⎜⎜⎟ ⎟⎜ ⎜⎜⎟ ⎟⎜ ⎜⎜ −⎟ ⎟⎜ ⎟ ⎟⎜⎟ ⎟⎜ ⎜= = ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎟⎜⎟ ⎟⎜ ⎜⎟⎜⎝ ⎠ ⎝⎟⎜ ⎟⎝ ⎠

⎞⎟⎟⎟⎟⎟⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎠

0

0

pn

qn

nn

 

 

                

11 1 1 1 1 1

1

1

1

( ) ( )1 0 0 0

( ) ( )0 0

0 0 ( ) ( )

0 0 0 1 ( ) ( )

p q p q n

p pp pq pp pq

q qp qq qp qq

n np nq np nq

a a c a s a s a c a

a a c a s a s a c ac s

s c a a c a s a s a c a

a a c a s a s a c a

⎛ + − +⎛ ⎞⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟ + − +⎜ ⎜⎟⎜ ⎟⎜⎟⎜ ⎜= ⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜− + − +⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠ + − +⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎠
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Hence, we let 

                               
 ( +A a ak p q p p p q1 1 1 1 0) sin cos( ) ( ) ( )− − −= − + =θ θ

      

which yields                              ( -1)

( -1)
tan = p q

p p

a
a

θ   

and so 

                     

sin cos( )

( ) ( )

( )

( ) ( )

, .θ θ=
+

=
+

−

− −

−

− −

a

a a

a

a a

p q

p q p p

p p

p q p p

1

1
2

1
2

1

1
2

1
2

   
 

 
This will not alter any elements whose row and column index is i or j where  
and 

,  i p q≠
, j p q≠ . If aip and aiq are both zero, then they are not altered by the 

transformation. 
 
 

Example 2.6    Reduce        to tridiagonal form. 

12 3 4 12
3 12 0 3
4 0 12 4

12 3 4 12

A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟= ⎜ ⎟⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
Solution 

                    

13
2 2
13 12

23
12

2 2
13 12

4sin1 0 0 0 50 0                0 0 3cos0 0 0 1 5

a
s

a ac sR s c a
c

a a

θ

θ

= = =⎛ ⎞⎟⎜ ⎟⎜ +⎟−⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜ = = =⎟⎜⎝ ⎠
+

     

                      1 23 23

12 5 0 12
5 12 0 5 .0 0 12 0

12 5 0 12

TA R AR

⎛ ⎞⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜= = ⎟⎜ ⎟−⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

Now  applying  :        24R 14
2 2 2 2
14 12

12 12
1312 5

a
s

a a
= =

+ +
=  

  12
2 2 2 2
14 12

5 5 ,
1312 5

a
c

a a
= =

+ +
=  

 

then                    2 24 24

12 13 0 0
13 12 0 5 .0 0 12 0
0 5 0 12

TA R AR

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= = ⎟⎜ ⎟−⎜ ⎟⎟⎜ ⎟⎜ −⎝ ⎠

Lastly, applying  :      34R 24
2 2 2
24 23

5 1
5 0

a
s

a a
= =

+ +
=  
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                                       23 0
5

ac = = , 

then                         3 34 34

12 13 0 0
13 12 5 0 .0 5 12 0
0 0 0 12

TA R AR

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= = ⎟⎜ ⎟−⎜ ⎟⎟⎜ ⎟⎜ −⎝ ⎠
Note:  -12 is an eigenvalue.                                                                                                           

 
Eigenvalues of a Symmetric Tridiagonal Matrix 
 

The method in this section can be used to find all the eigenvalues of a symmetric tridiagonal 
matrix. Let  A be an n  symmetric matrix, then there are  n real eigenvalues. The eigenvalues 
are the zeros of the characteristic polynomial of A. To compute 

n×
( ) ( )detnf A Iλ = −λ , introduce 

the sequence  
                

fo ( )λ = 1 
 

                

1 1

1 2 2

2 3 3

3

1

1

( )k

k

k k

a b
b a b

b a bf b
b

b a

λ
λ

λ
λ

λ
−

−

⎡ ⎤−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

By direct calculation, 
 

fo ( )λ = 1 
 

f a1 1( )λ λ= −  
 

f a a b a f b f2 1 2 1
2

2 1 1
2

0( ) ( )( ) ( ) ( ) ( )λ λ λ λ λ= − − − = − − λ

λ

 
 

f a f b f3 3 2 2
2

1( ) ( ) ( ) ( )λ λ λ= − −  
 

f a f b f kk k k k k( ) ( ) ( ) ( ),λ λ λ λ= − − ≥− − −1 1
2

2    1  
 

                    

which can be proved by expanding the determinant in its last row using minors. 
 

At this point, we can consider the problem as solved since fn(λ) is a polynomial and there are 
many polynomial root finding methods. But the sequence  fk has special properties that make it a 
Sturm sequence and these properties make it comparatively easy to isolate the eigenvalues of A. 

 
Theorem 12. 3 The  number  of  agreements  in  sign  of  consecutive  members  of  the  sequence   fk(p) 

(k = 0, n)  is  the number of eigenvalues greater than  p. When the term in the sequence equals 
zero, the sign should be taken to be the opposite of the sign of the previous term.  

  
Use the above theorem, we can find the eigenvalues of A. 



                                                            Ch 12 The Eigenvalue Problem 225 

Example 12.7   Given    find an interval, of length  less than or equal  0.5, 

containing the smallest eigenvalue. 

2 1 0 0
1 2 1 0 ,0 1 2 1

0 0 1 2

A

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜= ⎟⎜ ⎟− −⎜ ⎟⎟⎜ ⎟⎜ −⎝ ⎠

  

Solution  
 

Gerschgorin discs  -2 2,   i.e.  0 4λ ≤ ≤λ≤ . Thus all eigenvalues (4 real eigenvalues) lie in 
[0, 4]. 
  

 
Sturm Sequence: 
 

             f po ( ) = 1 
 

             f p a p p1 1 2( ) = − = −  
 

              f p a p f p b f p p f p2 2 1 1
2

0 12 1( ) ( ) ( ) ( ) ( ) ( )= − − = − −
 

             
 

f p a p f p b f p p f p f p3 3 2 2
2

1 22( ) ( ) ( ) ( ) ( ) ( ) ( )= − − = − −  1

2              f p a p f p b f p p f p f p4 4 3 3
2

2 32( ) ( ) ( ) ( ) ( ) ( ) ( )= − − = − −
 

 

Range    p     f0     f1     f2      f3     f4 
 

 

# agreements 
 

Remark 
 

[0, 4]   2        1    0      –1      0      1       
                            (+)      (–)     (–)      (+)          (+) 

 

2 
 

2 eigenvalues > 2 

 

[0, 2]   1        1    1           0       –1       –1     
                         (+)      (+)         (–)      (–)       (–)        

 

3 
 

3 eigenvalues > 1 

 

[0, 1]   0.5       1   1.5     1.25      0.38     –.69 
                            (+)      (+)         (+)       (+)        (–) 

 

3 
 

3 eigenvalues > 0.5 

   
 

Hence, the interval containing the smallest eigenvalue is [0, 0.5]. 
 

– To refine the above estimate, continue applying the bisection method to [0, 0.5] (very slow 
process but stable). 

– Although all roots of a symmetric tridiagonal matrix may be found in this way, it is 
generally faster to use other algorithms. With large matrices, we usually do not want all of 
the eigenvalues and then this method is ok. 

– If we want only specific roots, for example, those in [1,3], then it is easy to locate them 
with this technique. 
 

 
 

               Computing Eigenvalues and Eigenvectors Using Maple/MATLAB 
 
 

12.7 

Computing  Eigenvalue and Eigenvectors Using Maple 
 

Maple povides  functions  “eigenvals()” and “eigenvectors()” to compute eigenvalues and 
eigenvectors of matrices. 
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Example 1    Given   
1 0 2
0 1 1
1 1 1

A
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

.  Find  eigenvalues and eigenvectors of A. 

> with(linalg); 
> A:=matrix(3,3,[1, 0, 2, 0, 1, -1, -1, 1, 1]); 
> e:=eigenvals(A); 
> v:=eigenvectors(A); 

 

     gives 
 

e := 1, 1+I 3 , 1-I 3  
v  := [1+I 3 ,1,{[-2 1 - I 3 ]}], [1-I 3 ,1,{[-2 1  I 3 ]}],[1,1,{[1 1 0]}] 

 
Note: the result returned by the function eigenvectors is a sequence of list of the form  

[ ]1 2, ,{[ ],[ ],...}i i i ie m v v  in which  ei  are the eigenvalues, mi  their algebraic 
multiplicities and  is a set of basis vectors for the eigenspace 
corresponding to e

1 2{[ ],[ ],...}i iv v
i . 

 
Computing  Eigenvalue and Eigenvectors Using MATLAB 
 

The MATLAB function “eig()” computes all the eigenvalues and their corresponding 
eigenvectors of a given matrix.   The syntax is 

 

[V, L] = eig(A)      
e =  eig(A) 

 

where  V  :   (output) modal matrix (  as defined in section 12.5) composed of eigenvectors of A; R̂
 L   :   (output) diagonal matrix whose diagonal elements are eigenvalues of A; 
 e    :   (output) eigenvalues. 

 

Example  Given   .  Find  eigenvalues and eigenvectors of A. 
1 0 2
0 1 1
1 1 1

A
⎡ ⎤
⎢= ⎢
⎢ ⎥−⎣ ⎦

⎥− ⎥

 
>> A=[1 0 2; 0 1 -1; -1 1 1]; 
>> [V,L] = eig(A) 

 
  yields 

                             

V
0.7071 0.7071 0.7071
0.3536 0.0000 0.3536 0.0000 0.7071
0.0000 0.6124 0.0000 0.6124 0.0000

L
1.0000 1.7321 0 0

0 1.0000 1.7321 0
0 0 1.0000

i i
i i

i
i

=

− + − +
+ −

=

+
−
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The diagonal matrix L give 3 eigenvalues of A: ; 
while the 3 columns of the matrix U are the eigenvectors corresponding respectively to 

. 

1 21 1.7321 ,  1 1.7321 ,  1i iλ λ= + = − =3λ

1 2 3,  and λ λ λ
 
If only the eigenvalues of A are to be computed, one could use the following command 

 

>> e = eig(A) 
       
        which returns the eigenvalues of A, 
 

                                 1.0000 1.7321
1.0000 1.7321
1.0000

e
i
i

=

+
−  

 

_____________________________________________________________________________________ 
 

EXERCISES 12 
 

Q12. 1    Let λ be an eigenvalue of the n n×  matrix A and x ≠ 0 be associated eigenvector. Show that 
  a)  If A –1exists, then 1/λ is an eigenvalue of A –1 with eigenvector x. 

 b) λ – p is an eigenvalue of A – p with eigenvector x. 
c)  If (A – αI) –1 exists (α λ≠ ), then 1/(λ – α)  is an eigenvalue of (A – αI)–1 with 

eigenvector x. 
 

Q12. 2    Describe in your words how to find 
a)  a bound for the eigenvalue using Gerschgorin's discs theorem; 
b)  the dominant eigenvalue and its associated eigenvector using the power method; 
c)  the smallest eigenvalue and its associated eigenvector using the power method (see 

Q12.1-b); 
d)  the eigenvalue closest to a given value p and its associated eigenvector using the power         

method (see Q12.1-c). 
 
 

Q12. 3    Use Gershgorin's Theorem to find bounds for the eigenvalues of  
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
211
101

001
      (a)                         

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−

411
141

014
    (b)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

301
032
123

    (c)

  
(Ans: (a)  ( : ;Ans   (a )   (b)  2 6;  (c)  0 6  )λ λ λ≤ ≤ ≤ ≤ ≤4  

 
 

Q12. 4   Find the larger eigenvalue and the corresponding eigenvector by the power method: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
11

  (a) ,   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
43
21

  (b)
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Q12. 5   Find the dominant eigenvalue and its corresponding eigenvector of  A =   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

111
310
211

     (Ans:  λ  ) = =3 49086 1 0 9362 0 7733. , [ , . , .         xT ]
 

Q12. 6   Invert the matrices in Q12.4(b) and Q12.5; then use the power method to get the smallest 
eigenvalue of the original matrices.  Repeat, except avoiding the inversion but using LU 
decomposition of the matrix. Compare the effort in the two cases. 

 

Q12. 7  Find all the eigenvalues of the matrix in Q12.5. Apply INVERSE power iteration method to 
matrix A – kI with appropriate values of k. 

       (Ans:  3.49086,  –0.83424,  0.34338) 
 

Q12. 8   After finding the dominant eigenvalue in Q12.5, subtract that value from each of the diagonal 
elements and use the power method.  Compare the value obtained with the second largest 
eigenvalue as determined in Q12.7. 

 

Q12. 9   Find the larger eigenvalue and corresponding eigenvector by the inverse power method:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−11
11

Q12. 10 Describe in your words 
a)  How to obtain a complete e.solution using Jacobi's method; 
b) How to reduce a symmetric matrix to a tridiagonal form; 
c) How to calculate the eigenvalue of a tridiagonal matrix. 

 
Q12. 11 Show that if B is obtained from A via a similarity transformation, then A and B have the same 

eigenvalues. Find a relationship between the eigenvectors of A and B. 
 
 

Q12. 12 Use the Jacobi method to determine all the eigenvalues of  the matrix . 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

321
230
103

A

 

Terminate iteration when all the off-diagonal elements have modulus not exceeding 0.001. 
Compare your results obtained from direct method (5.23607, 3, 0.76393). 

 

Q12. 13 Apply Given's method to reduce the following matrix to tri-diagonal form   
2 1 4
1 2 1

4 1 1

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠

Q12. 14 Reduce A to tri-diagonal form C, where  

1 2 2

2 2

2 1 2

A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ − ⎟⎜⎝ ⎠

1 . 

If 1 ,  0,  1
2

T⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜ ⎟⎝ ⎠
is an eigenvector of C, write down the corresponding eigenvector of A. Find the 

number of non-negative eigenvalues of A. 
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Q12. 15 Use Gershgorin's discs to find bounds on the eigenvalues of  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1200
2120
0212
0021

A

 

Find the Sturm sequence for evaluating the eigenvalues of A.  Determine the eigenvalue of the 
largest modulus using the Sturm sequence (to two decimal places). 

 
 

Q12. 16 The eigenvalues of the tri-diagonal matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

120
212

021
  lie in the interval ( ) . ,  a a−

(a)    Find the smallest value of a. 
 

(b)   Using  for simplicity, find an interval containing each eigenvalue by use of Sturm  
sequences. 

a = 6

 

Q12. 17   Reduce the matrix   to tri-diagonal form using Given's method. 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−

3351
3120
5221
1011

 

 
PROGRAMMING 
 

Q12. 18 Write a program to find the dominant eigenvalue and its associated eigenvector using the 
power method. Hence find the dominant eigen- solution of the matrix 

                          
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

321
230
103

          (Ans: 5.23607, [0.44721, 0.89443, 1] ) 
 

Hint:  1)  Write a subroutine ReadDat  to read data 
  2) Write a subroutine to implement the Power method 

 
        

SUBROUTINE POWER(N, A, Z, Tol, MaxNit, NewMu, Ierr) 
 

N    =  Before entry, N must be set to the dimension of A. 
Z   =  Before entry, z must be set to ( )0z ; On exit it contain the eigenvector x1. 
Tol      =  Before entry, Tol must be set to a positive tolerance for controlling the  

                                                   error in the approx. 
MaxNit =  Before entry, MaxNit must be set to the Maximum number of iterations                

                                                 allowed. 
NewMu =  On exit, it contains the eigenvalue with maximum modulus, i.e., λ1. 
Ierr   =  On exit, Ierr = 0 indicates that the process converges to λ1 .      
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        Algorithm:   

          Set  Niter = 0 
             NewMu = 0 
          Do While (Niter < MaxNit) 
             Set  Niter = Niter+1 
                    OldMu = NewMu 
             Call  FindYmult (N, A, Z, Y)            –  y(k) = Az(k – 1)

             Call  FindMu (N, Y, NewMu, NewI)        –  Find μk from y(k)

                                    Call FindZ (Y, NewMu, Z)             –  z(k) = y(k)/μk
             If (    and  =   )  ThenNewMu OldMu Tol OldMu NewI OldI− ≤ *  
                Set  Ierr = 0 
                Return 
             EndIf 
          EndDo 
          Ierr = 1 
          Return  

 
 Note: Test for convergence: 
    1The size of  converges

The element with max. modulus occurs at the same position of the e.vector at any two consecutive iteration.
λ⎧⎪⎪⎨⎪⎪⎩

 

3)   Write a main program to control the process. 
 
Q12. 19 Write a program to find the eigenvalue closest to p and the associated eigenvector. Hence find 

the eigenvalue closest to 2.5 and its associated eigenvector for the matrix in Q12.18. 
 (Ans: 3,  [1, – 0.5, 0] ). 
 

Hint:  A program plan for the inverse power method would be very similar to that for the 
direct power method except that the method used to evaluate y(k) is different: The 
P.M. use matrix-vector multiplication whereas the I.P.M. requires the solution of a 
linear system By(k) = z(k – 1)  where B = A – pI. 

  

Modification:      

       SUBROUTINE POWER(N, A, p, Z, Tol, MaxNit, NewMu, Ierr) 
   

1)   Form B = A – pI and then factor B into L U matrices before executing the while loop.   
 

   2) Replace the Subroutine FindYmult by a forward-backward substitution subroutine  
FindYsubst .    

 

3)  When convergence is reached, calculate (before exit) the eigenvalue closest to p by 
                                     NewMu p NewMu p k= + = +1 1/ * / )  (λ μ  
 

Q12.20 Write a program to find the complete eigen solution of a  n n×  matrix. Hence find the 
complete eigen solution for the matrix in Q12.18. 

 
Q12.21 Find the eigenvalues and eigenvectors of the matrices in Q12.12 and Q12.18 using 

Maple/Matlab built-in functions. 
_________________________________________________________________________________ 
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             Solution of Boundary Value Problems for         
           Partial Differential Equations 

CHAPTER 

13 
 

 
The mathematical formulation of most real world problems in science and industry usually leads to 
a boundary value problem: a differential equation (or a set of differential equations) subject to 
certain initial and boundary conditions. 

 

For example, the transient temperature field in a bounded domain Ω can be described by  
 

( )2 ,        Tc k T Q
t

ρ
∂

= ∇ + ∈Ω
∂

x x  

    ( ),          T h T T
n ∞

∂
=− − ∈∂Ω

∂
x  

 

( ) ( )00,  ,                  T T= ∈x x x Ω  
 

where  denotes  heat source and  ρ, c, k and  h   are constants. ( )Q x
 

In this chapter, we are concerned with 
 

1) Classification of partial differential equations (PDEs). 
2) Type of boundary conditions (BC). 
3) An overview of the methods for solving boundary value problems (BVP). 

 
 

              Classification of Partial Differential Equations (2nd order) 
 

 

13.1 

Definition: A differential equation is said to be  
 

linear –  if it is a linear equation of the unknown function and its derivatives,  
 

       eg.     auxx+ buyy+ cux+ du = Q(x,y) , 
 

                       where a, b, c and d are constants, and Q is a function of x and y; 
 

quasi-linear – if all the highest derivative terms are linear but some of the lower order 
derivatives are non-linear,  

     eg.      auxx+ bux
2  =  f(x, y, u); 

 

 non-linear –  if the equation is neither linear nor quasi-linear,  
                           eg.     uxx+ 2uxy

2 + bu = Q(x, y) . 
 

Most partial differential equations (PDE) arising from real world problems are second order. In 
this chapter we will focus only on second order quasi-linear equations which has the general form  

 

                  auxx +  buxy + cuyy + h(x, y, u, ux, uy)  =  0, 
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and can be classified into three categories according to the value of  b2
 – 4ac,  namely 

 

elliptic          if    b2
 – 4ac  <  0; 

parabolic       if    b2 – 4ac  =  0; 
hyperbolic    if    b2 – 4ac  >  0. 

 
Remark :  If a, b and c are functions of x, y and u, the equation may change its type from one 

region to the other in the computation domain. 
 

Example 13.1 
 

Poisson equation               is  elliptic    ( a = c = 1, b = 0). 2u σ∇ =
 

Diffusion equation     
2

2
u
t

u
x

∂ ∂
=

∂ ∂
       is  parabolic   ( a = 1 b = c = 0). 

Wave equation          
2 2

2
2
u

t x
α

∂ ∂
=

∂ ∂ 2
u  is  hyperbolic ( a = α 2 , b = 0, c = –1). 

Example 13.2 

Consider   ( )
2 2

2 21 ,  0M x y
x y
φ φ∂ ∂⎡ ⎤− +⎣ ⎦ ∂ ∂

= . 
 

The equation is   elliptic        if    M(x, y)  <  1, 
                  parabolic    if    M(x, y)  =  1, 
                  hyperbolic  if   M(x, y)  >  1. 
   
             

 Boundary and Initial Conditions               
 
 

 13.2    

If we do not distinguish between time and space as independent variables, an initial condition can 
also be regarded as a boundary condition. 

 

For a real world problem, usually, we know the value of the unknown function and/or its 
derivatives on part of the boundary ∂Ω. As the solution must satisfy the conditions on the 
boundary, we have to solve the partial differential equation in Ω subject to the boundary 
conditions on ∂Ω. 

     

Boundary conditions are usually of the following types: 
 

(i)   Dirichlet type (also called essential boundary condition)   
 

 u    on ∂Ω     û= .
   

(ii)    Neumann type (also called natural boundary condition) 
 

ˆu
n

σ
∂

=
∂

   on ∂Ω . 
 

(iii)  Robin type (mixed or general boundary condition) 
 

  ( 0 0)u ku f   α ,  k
n

α
∂

+ = ≠ ≠
∂

  on . ∂Ω
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               Methods  for Solving Boundary Value Problems (BVPs) – an Overview 
 
 

 13.3 

In general, a BVP can be written as  
 

                                                                                               (13.1) 
( )        on    
( )         on   

L u f
B u g

⎧ = Ω⎪⎪⎨⎪ = ∂⎪⎩ Ω
 

where    f,   g   are known functions,  
L    is  a linear or nonlinear differential operator, 
B   is  a boundary operator. 

 
The general problem is to find the unknown function u that satisfies the PDE in Ω and the 
boundary condition on ∂Ω.  There are many alternative approaches for solving linear and nonlinear 
boundary value problems, and they range from completely analytical to completely numerical and 
can be classified as   

 
i)    Direct Integration methods    

      

  eg.    Separation of variables, similarity solutions,  
Fourier and Laplace transformations.   

 
ii)  Approximate Solution methods

 
eg.    Perturbation, Power series, Probability schemes (Monte Carlo) 

The method of characteristics for hyperbolic equations  
Finite difference technique, 
Ritz method 
Finite element method. 
Boundary element method. 

 

Remarks 
 

a) Only for very simple problems, it is possible to obtain an exact solution by direct 
integration of the differential equation. 

 

b) The Power series method is powerful, but since the method requires generation of a 
coefficient for each term in the series, it is relatively tedious.  

 

c) The perturbation method is applicable primarily when the nonlinear terms in the 
equation are small in relation to the linear terms. 

 

d) The probability schemes (Monte Carlo Method) are used for obtaining a statistical 
estimate of a desired quantity by random sampling.  These methods work best when the 
desired quantity is a statistical parameter & sampling is done from a selective 
population. 

 
e) With the advent of high-speed computers, it appears that the three currently outstanding 

methods for obtaining approximate solutions of high accuracy are the finite difference 
method, the finite element method and the boundary element method. The finite 
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difference method usually is only applicable to problems with simple geometry.  The 
boundary element method is a more efficient and accurate method, which usually 
reduces the dimensionality of the problem by one.  However, the application of the 
boundary element method requires a singular solution to the problem, which limits its 
application. The finite element method is a more general and versatile method. In 
principle, any problem, which can be solved by the finite difference method or the 
boundary element method, can also be solved by the finite element method.   

 

In this chapter, we will study briefly the finite difference method. 
 
 

               Finite Difference Method (FDM) for PDEs 
 
 

13.4    
 

To solve the BVP (13.1) with L =  using the FDM, we need to perform  the following work 2∇
 

1) Discretize Ω into a mesh of discrete points called nodes. 
 

2) Approximate all derivatives using the values of the unknown function at the nodes, and  
thus, the differential equation is approximated by a system of algebraic equations with the 
nodal values of the unknown function as basic unknowns. 

 

3) Solve the linear or nonlinear system of algebraic equations. 
 

In the following, we first show how to discretize Ω and approximate derivatives, and then 
demonstrate how to convert a boundary value problem into a system of algebraic equations and 
solve as such through an example. 

 
Discretization and Derivative Approximation  
         

Firstly, the domain  Ω, say (a,b)×(c, d) in the xy- plane, is  
subdivided into a set of equal rectangles of sides  

 

               δx = h=(b-a)/n,  δy = k=(d-c)/m. 
 

Obviously,  in the coordinate system chosen 
 

               (xi, yj) = (a+ih, c+jk),  (i=0,n; j=0, m).   
 

Thus for convenience in presentation, we use (i,j)  
to denote the position (xi,yj) and  to represent ,i ju
u(xi,yj), namely        

                     
,

( , ) ,

( , ) .
i j

i j i j

x y ij

u x y u

=

=
 

Now, we are ready to derive formulae for the approximation of derivatives. From Taylor’s 
Theorem, we have 

                    ( )
2

1, , ,  ...
2i j i j i j x xx

hu x h y u u hu u++ = = + + +                                      (13.2) 

          ( )
2

1, , ,  ...
2i j i j i j x xx
hu x h y u u hu u−− = = − + −                                          (13.3) 

where xu  and xxu are all evaluated at (xi,yj). 

  

x

 y 

    

   k 
 

      h 

     (i –1, j)    (i +1, j)  
 

    (i, j+1)  

    (i, j)  

       

     (x, y)  

 

    (i, j–1)  

a

 

      c 
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(13.2) – (13.3) and then rearranging yields 
 

                               ( )1, 1, 2

, 
.

2
i j i j

i j

u uu O h
x h

+ −−⎛ ⎞∂ ⎟⎜ = +⎟⎜ ⎟⎜⎝ ⎠∂
  

(13.2) + (13.3) and then rearranging yields 
 

                            ( )
2

1, , 1, 2
2 2

, 

2
.i j i j i j

i j

u u uu O h
x h

− +⎛ ⎞ − +∂ ⎟⎜ ⎟⎜ = +⎟⎜ ⎟⎟⎜∂⎝ ⎠
 

In the same way , we have 
 

       ( )
2

, 1 , , 1 2
2 2

, 

2i j i j i j

i j

u u uu O k
y k

− +⎛ ⎞ − +∂ ⎟⎜ ⎟⎜ = +⎟⎜ ⎟⎟⎜∂⎝ ⎠
. 

By using the Taylor theorem in 2 variables, we have 
 

    ( )
2

1, 1 1,  1 1,  1 1,  1 2 2

,  
4

i j i j i j i j

i j

u u u uu O h k
x y hk

+ + − + + − − −⎛ ⎞ − − +∂ ⎟⎜ ⎟⎜ = +⎟ +⎟⎟⎜∂ ∂⎝ ⎠⎜ . 

If we choose h = k, then 

                 ( )2 2
,  1,  1,  ,  1 ,  1 ,  2

1 4i j i j i j i j i j i ju u u u u u O
h − + − +

⎡ ⎤+ + + − +⎢ ⎥⎣ ⎦ h∇ = , 
 

which can be graphically displayed by 
 

                   2
,  ,  

1
1 4 1  

1
i j i ju u

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥

∇ =

⎣ ⎦

 
  u = 0 

 u = 0    u =0 

u
u

y

∂
=

∂  

   1×1 

 

which is called a 5- points difference scheme.  
 
Elliptic Partial Differential Equations 
                                                                             

Consider  on a square with BCs as shown. (2 ,  u f x y∇ = )

 

Firstly, we discretize the system.  Let N = 4, h = 1/4, then  
the domain is discretized into a mesh with 5×5 grid points  
as shown. The nodes where u is to be determined are only  
those points 

  1   2   3 

  i= 0 
  j= 0 

  1 

  2 

  3 

  4 

  1   2  3  4  x

  y 

4   5 

  7   8   9 

  10   11   12 

  6 

 

                       (i, j) : i = 1 to 3,  j = 0 to 3. 
 

At each of these nodes, we can set up an equation 
  

                                2
,  ,i j i ju f∇ =

 

and  thus  the total number of equations  equals  to  the  
number of  unknowns, i.e., 12. 
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Now, we consider construction of the equations for the  determination of  .   , ( 1,3, 0,3)i ju i j= =

 
By using the 5-point finite difference approximation  
 

2
,  ,  2

1
1 1 4 1  

1
i j i ju u

h

⎡ ⎤
⎢ ⎥
⎢ ⎥∇ = −⎢ ⎥
⎢ ⎥
⎣ ⎦

,        

the  given PDE becomes 
 

 2
,  ,

1
1 4 1  

1
i j i ju h f  

⎡ ⎤
⎢ ⎥
⎢ ⎥− =⎢ ⎥
⎢ ⎥
⎣ ⎦

                                     (13.4) 

 

 or            
                       (i = 1 to 3,  j = 0 to 3)                         (13.5) 2

,  1 1,  ,  1,  ,  1 ,  4i j i j i j i j i j i ju u u u u h f− − + ++ − + + =

 
For each grid point, where u is to be determined, we have one equation. Usually we would 
construct these equations row by row .  For  j=0, as the above equation involves ui,-1, we need to 
approximate  ui,-1 by using the boundary condition and this will be considered later; while for  i, j = 
1, 2, 3, we can immediately obtain the following nine equations 

 
 

 

or in matrix form                                                                               (13.7) 

? ? ? ?
I B I

I B I
I B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

u F

where   

                                             
4 1 0

1 4 1
0 1 4

B
⎡ ⎤−
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 .

 

 

j=0     Col  i = 1 
                       2 
                       3 

 
    equations for j=0 are to be constructed later 

j=1            i = 1 
                       2 
                       3 

1 
       1 
             1 

–4    1 
 1  –4    1 
       1  –4 

1 
       1 
             1 

 

j=2            i = 1 
                       2 
                       3 

 1 
       1 
             1 

 –4    1 
 1  –4    1 
       1  –4 

1 
       1 
             1 

j=3            i = 1 
                       2 
                       3 

  1 
       1 
             1 

 –4    1 
 1  –4    1 
       1  –4 

(13.6) 

10 10
20 20
30 30
11 11
21 21

231 31
12 12
22 22
32 32
13 13
23 23
33 33

u f
u f
u f
u f
u f
u f
u f
u f
u f
u f
u f
u f

h

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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Remark 1  (Dirichlet boundary condition):  On x = 0 (i = 0), x = 1 (i = 4) and y = 1 (j = 4), u = 0. 
So the BCs never enter the calculation. If  on these sides then one must move 
these known values to the right hand side of the equations. 

ˆu u=

 

Remark 2  (Neumann type boundary condition):   For y = 0 (j = 0),   (13.5) becomes 
                

2
,  1 1,  0 ,  0 1,  0 ,  1 ,  04i i i i iu u u u u h f− − ++ − + + = i                       (13.8) 

  
Obviously,  is not defined as the point (i, –1) is outside the region Ω considered. 
So we need to eliminate the term using the Neumann boundary condition, as 

given below. As we know the value of  

, 1iu −

, 1iu −

u
y

∂
∂

 on y = 0, we introduce a fictitious set of 

grid points  (i, –1) (i = 1, 2, 3) as shown below.   
 
 

 j= -1
 j= 0 

 
 
 
Then at the boundary point (i, 0), we can approximate the BC by  

 

                ,1 , 1
,0

0 2
i i

i
j

u uu u
y h

−

=

−∂                                      (13.9) = =
∂

i

iu u u h f− +− + + + =

i

 

which gives                       
                                       .                                       (13.10) , 1 ,1 ,02i iu u hu− = −

 
 

Substituting (13.10) into (13.8) yields 
 

                        u h   (i = 1, 2, 3)                      (13.11) 2
1, 0 , 0 1, 0 , 1 , 0(4 2 ) 2i i i i

 

or                                                       

                                                     2
,  0 ,  0

0
1 (4 2 ) 1  

2
ih u h f

⎡ ⎤
⎢ ⎥
⎢ ⎥− + =⎢ ⎥
⎢ ⎥
⎣ ⎦

,   (i=1,2,3). 

 

For j = 1 and i = 1, 2, 3, we obtain 
 

          
-(4+2 ) 1 0 2 0 0 0 0 0 0 0 0

1 -(4+2 ) 1 0 2 0 0 0 0 0 0 0 F
0 1 -(4+2 ) 0 0 2 0 0 0 0 0 0

h
h

h

⎡ ⎤
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u  

 

From the above and equation (13.6), we have 
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                              , 

2 2

F

B hI I
I B I

I B I
I B

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

0 0
0

u
0
0 0

 

which can then be solved by a direct method or an  iterative method for linear systems of 
equations. 

 

 
 

              Improvement of the Accuracy of Solution 
 
 

13.5   
 

One way to improve accuracy is by reducing the value of k and h, i.e., through mesh refinement. 
Here we introduce two other methods. 

 
Deferred Approach to the Limit   

 
Denote   u  =  true solution, 

uh =  finite difference solution, 
 

then        u  =  uh + error. 
       

For example, let  uh  be the solution of the Laplace equation by using the 5 point scheme, then       
            

u = uh +Ah2 . 
 

Based on the above formulae, to accelerate the convergence of numerical solutions, we could use 
the so-called deferred approach to the limit suggested by Richardson. 

 

Let     u1= approximation obtained by using mesh size h, then  
 

                                                           u = u1 +Ahp .                                                                       (13.12) 
 

If  the mesh size h is reduced from  h  to  h/2, then  
          

               u = u2 +A(h/2)p.                             (13.13) 
 

where u2 is the approximation obtained with h/2. from (13.12) and (13.13), by eliminating p, we 
obtain 

                   2 12
.

2 1

p

p
u u

u
−

=
−

                                                                   (13.14) 
 

For example,  for  p = 2 

                                           2 14
3

u uu −
= . 

 

If  p  is unknown, it can be estimated from three approximate solutions at the same point obtained 
by using different mesh sizes.  Let u1 , u2  and u3 are approximations at the same point obtained 

respectively using step size  h1 , h2  and h3  where 3 2
1 1
2 4

h h= = 1h ,  then          
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( )

( )

1 1

1
2 12

1
3 14

,         

,

,

p

p p

p p

u u Ah

u u A h

u u A h

= +

= +

= +

 

from  which, we have 

( )

( ) ( )

1
2 1 1 2

1 1
3 2 1 2 2

u 1 0,        

u 1

pp

p pp

u Ah

u Ah 0.

⎡ ⎤− + − =⎢ ⎥
⎣ ⎦

⎡ ⎤− + − =⎢ ⎥
⎣ ⎦

 

Hence,
2 1

3 2

u
2 .

u
p u

u
−

=
−  

 Deferred Correction Method 
 

From Taylor’s Theorem  

 ( )
2

, ,  ...... ......
2

hD
i j x xx

hu x h y u hu u e u+ = + + + + =                                                (13.15) 

( )
2

,  ,  .................
2

hD
i j x xx

hu x h y u hu u e u−− = − + − =                            (13.16) 

where  xD ∂
∂= . 

 

Using  the central difference formula at (x, y) 
 

            2 2
,  1 1 ,  ,,  ,  

2 2

2sinh
2

h hD D
 x i j i j i ji j i j

hDu u u e e u uδ
−

+ −

⎛ ⎞⎟⎜ ⎟⎜= − = − =⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
                        (13.17) 

        2sinh
2x

hD
δ∴ =                                                   (13.18) 

       
3 52

1
3 5

2 2 1 3sinh ............
2 2 3! 5!2 2
x x x xD

h h
δ δ δ δ−

⎡ ⎤
⎢ ⎥= = − + −⎢ ⎥
⎢ ⎥⎣ ⎦

 

       
2

2 -1 2 4
2 2

4 1 1 sinh ............
2 12
x

x xD
h h

δ
δ δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

                              (13.19) 

 

Thus for ,  as  ( )2u F x∇ =
 

          
2

2 2 2 4
2

1 ... ,
12xx x x

uh u h u
y

δ δ
⎛ ⎞ ⎛ ⎞∂ ⎟⎜ ⎟⎜⎟⎜= = − + ⎟⎜⎟⎜ ⎟⎜⎟⎟ ⎝ ⎠⎜ ∂⎝ ⎠

 

      
2

2 2 2 4
2

1 ...
12yy y y

uh u h u
y

δ δ
⎛ ⎞ ⎛ ⎞∂ ⎟⎜ ⎟⎜⎟⎜= = − + ⎟⎜⎟⎜ ⎟⎜⎟⎟ ⎝ ⎠⎜ ∂⎝ ⎠

, 

we get  



240 

            ( ) ( )2 2 4 4 2
, ,

1
12 , x y i j x y i j i ju uδ δ δ δ+ − + ≈ h F ,                                                          (13.20) 

or                  2
, , 

1
1 4

11 4 1  1 4 12 4 1
12

1 4
1

i j i j i ju h F u ,    .

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ −⎢ ⎥⎢ ⎥ ⎢⎢ ⎥− = + − −⎢⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦
⎢ ⎥

⎥
⎥

⎢ ⎥⎣ ⎦

                       (13.21) 

The initial approximation is given by solving  
 

                             ,                               (13.22) 2
, ,

1
1 4 1  

1
i j i ju h F

⎡ ⎤
⎢ ⎥
⎢ ⎥− =⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

which is, of course, the usual five-points formula. 
 

The initial approximation is then used to calculate the second term in the right hand side of 
(13.21), and then the system (13.21) is solved for an improved solution. 
 

 

  

              Solution of  PDE Boundary Value Problems using  
            Maple/MATLAB 

13.6   
 

 
 

Solution of  PDE Boundary Value Problems using Maple 
 

The Maple function  “pdsolve()”  can be used to find  solution of time related boundary value 
problems for partial differential equations. The syntax is   

 
 pdsolve(PDEs,conditions,numeric,vars,options) 

 
where PDEs  :     a single or a set of time-dependent partial differential equations in two 

independent variables 
conditions :    a set of initial and boundary conditions 
numeric     :    keyword indicating a numerical solution is to be obtained 
vars           :    (optional) a dependent variable or a set of dependent variables for PDEs 
options    :  (optional) equations of the form keyword = value where keyword is one of 

'indepvars', 'time', 'range', 'spacestep', 'timestep', 'bcopts', 'optimize', 'errorest', 
'errortype', 'abstol', 'mintimestep' or 'maxtimestep'; specify options for the 
problem and its solution . 

 

Example   Solve   

2

2
1( , ) ( , )

10

( ,0) 1, (0, ) 0, (1, ) 0

u x t u x t
t x

u x u t u t
x

⎧ ⎛ ⎞⎪ ∂ ∂ ⎟⎪ ⎜ ⎟⎪ ⎜= ⎟⎪ ⎜ ⎟⎟⎜⎪⎪⎨⎪
 ∂ ∂⎝ ⎠

⎪ ∂⎪ = = =⎪⎪ ∂⎪⎩
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which is a heat conduction equation with the left end fixed at a constant temperature and 
the right end insulated.   
 
Firstly, we define the partial differential equations by using the following Maple 
statement 

 

> PDE := diff(u(x,t),t)=1/10*diff(u(x,t),x,x); 
 

which produces 
 

              
2

2
1: ( , ) ( ,

10
PDE u x t u x t

t x

⎛ ⎞∂ ∂ ⎟⎜ ⎟⎜= = ⎟⎜ ⎟⎟⎜∂ ∂⎝ ⎠
)  

Then we define the initial and boundary conditions as follows: 
> IBC := {u(x,0)=1, u(0,t)=0, D[1](u)(1,t)=0}; 
 

which yields 
 

                    
IBC := {u (x, 0 ) = 1, u (0, t ) = 0, (D1 (u ) ) (1, t ) = 0}

 
 

We now solve the above boundary value problem using function “pdsolve()”  and 
plot the heat profiles at t=0, 0.1, 0.5, 1 and 2. 

 

> pds := pdsolve(PDE, IBC, numeric) ; 
> p1 := pds:-plot(t=0): 
> p2 := pds:-plot(t=1/10): 
> p3 := pds:-plot(t=1/2): 
> p4 := pds:-plot(t=1): 
> p5 := pds:-plot(t=2): 
> plots[display]({p1,p2,p3,p4,p5},title=`Heat 
profile at t=0,0.1,0.5,1,2`); 
 

 

                    
To see the output  pds,  we enter  

 
> pds:-value(t=1,output=listprocedure); 

 

to produces 
 

                              
[x = proc(x ) ...end proc, t = 1., u (x, t ) = proc(x ) ...end proc]
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Use  “uval:=rhs(op(3,%))” to extract the solution u(x,t) from the third column of the 
above list and use function “fsolve( )”  to  determine the x value between 0 and 1 that 
give u(x,t)=1/2. 

 
> uval := rhs(op(3,%)); 
> fsolve(uval(x)=1/2,x=0..1); 
 

which gives 

                     
0.2978753742

 
and plot the result using the following statement 
 

> pds:-plot3d(t=0..1,x=0..1,axes=boxed, 
            orientation=[-120,40], 
            color=[0,0,u]); 

 

 
 

Solution of  Boundary Value Problems for PDEs using MATLAB  
 

The MATLAB PDE solver, pdepe(), solves initial-boundary value problems for systems of 
parabolic and elliptic PDEs in one space variable and time. There must be at least one parabolic 
equation in the system.    
 

 ( )( , , , '( )) ( , , , '( ) ( , , , '( ))m muc x t u u x x x f x t u u x s x t u u x
t x

−∂ ∂
= +

∂ ∂
                               (*) 

 

with initial and boundary conditions in the following forms: 
 

                                                                       (**)  0 0( , ) ( )
( , , ) ( , ) ( , , , '( )) 0

u x t u x
p x t u q x t f x t u u x

=

+ =
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The PDEs (*) hold for 0 ft t t≤ ≤  and a x b≤ ≤ . The interval  [a,b] must be finite.  m can be 0, 1, 
or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If m>0, then  

must also hold.  The basic syntax of the solver is  0a ≥
 
 

 

 sol = pdepe(m,@pdefun,@icfun,@bcfun,xmesh,tspan) 
 

 

where  
m            :  specifies the symmetry of the problem; m can be 0 = slab, 1 = cylindrical, or                 

2 = spherical. 
 

pdefun :   Function that defines the components of the PDEs. It computes the terms  c, f 
and s  in Equation (*), and has the form 

 

[c,f,s] = pdefun(x,t,u,dudx); 
 

where x and t are scalars; and u and dudx are vectors that approximate the 
solution u and its partial derivative with respect to x; c, f, and s are column 
vectors; c stores the diagonal elements of the matrix c. 

 

icfun   :     function that evaluates the initial conditions. It has the form 
 

u = icfun(x); 
 

When called with an argument x, icfun() evaluates and returns the initial 
values of  the solution components at x in the column vector  u. 
 

bcfun  :    Function that evaluates the terms  and  the boundary conditions. It has the form  
 

  [pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t); 
 

where ul is the approximate solution at the left boundary xl=a and ur is the 
approximate solution at the right boundary xr=b;  pl and ql are column 
vectors corresponding to p and the diagonal of q evaluated at xl. Similarly, pr 
and qr correspond to xr.   

 

Example   Solve   

2

2
1( , ) ( , )

10

( ,0) 1, (0, ) 0, (1, ) 0

u x t u x t
t x

u x u t u t
x

⎧ ⎛ ⎞⎪ ∂ ∂ ⎟⎪ ⎜ ⎟⎪ ⎜= ⎟⎪ ⎜ ⎟⎟⎜⎪∂ ∂⎝ ⎠⎪⎨⎪⎪ ∂⎪ = =⎪⎪ ∂⎪⎩
=

 

 

Firstly, rewrite the PDE in the form of (*) and the boundary conditions in the form  of (**). 
 

0 0 1 0
10

u ux x
t x x

∂ ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

with parameter m=0 and the terms 
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( , , , '( )) 1
1( , , , '( ))

10
( , , , '( )) 0

c x t u u x
uf x t u u x
x

s x t u u x

=
∂

=
∂

=

 

and   

 

1(0, ) 0 (0, ) 0 at 0
10
1  0   10 (1, ) 0 at 1

10

uu t t x
x
u t x
x

∂⎛ ⎞+ ⋅ = =⎜ ⎟∂⎝ ⎠
∂⎛ ⎞+ ⋅ = =⎜ ⎟∂⎝ ⎠

 

with the terms 
 

      1,   0,    0,   10.pl ql pr qr= = = =
 

Then, we create three M-files for the PDE function “pdex1pde()”, the initial condition 
function “pdex1ic()”and  the boundary condition function  “pdex1bc()” as follows. 

 
function [c, f, s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = (1/10)*DuDx; 
s = 0; 

 
function  u0 = pdex1ic(x) 
u0 = 1; 

 
function [pl,ql,pr,qr]=pdex1bc(xl,ul,xr,ur,t) 
pl =ul; 
ql = 0; 
pr = 0; 
qr = 10; 

  
Next we use the function “pdepe()” to find the solution on the mesh produced by 20 
equally spaced points from the spatial interval [0,1] and five values t from the time interval 
[0, 2] and plot the solution. 

 
>> x=linspace(0,1,20); 
>> t=linspace(0,2,5); 
>> m=0; 
>> sol=pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
>> u = sol( :, :, 1); 
>> surf(x,t,u); 

 

yields 
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Notes:  The output argument  sol  is a three-dimensional array, such that:  
sol(:,:,k)   approximates component k of the solution .  
sol(i,:,k)   approximates component k of the solution at time tspan(i) 

and  mesh points xmesh(:).  
sol(i,j,k)   approximates component k of the solution at time tspan(i) 

and the mesh point xmesh(j). 
____________________________________________________________________________________________ 
5 

EXERCISE 13 
 

 

Q13.1 Write a subroutine for solving a linear system Ax = b using the SOR method. Then write a 
program that use the subroutine to solve the following system of equations correct to 5 decimal 
places 

 

            
1

2

3

10 8 0 6
8 10 1 9

0 1 10 2

x
x
x 8

⎡ ⎤⎡ ⎤− −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦⎣ ⎦

  

 

 Run the program for a sequence of values of ω between 1 and 2. 
 

Q13.3   Consider 

  u = 0 

 u = 0   u =0 

2
u

u
y

∂
=

∂  2 2

2 2 2u u x y
x y

∂ ∂
+ = −

∂ ∂
 

              

on a square with boundary conditions as shown. 
a) Construct the finite difference scheme, use N = 4 (or N = 3) 
b)  Write a program to solve the BVP. 

      
Q13.3    Write a program that use the subroutines LUFACT and SUBST  to solve the system of equations 

in Q13.1. 
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Q13.4   Solve the following heat conduction problem using Maple/MATLAB built-in functions 
 

        
2

2 0    for  0 1  and  0,u u x t
t x

∂ ∂
− = < < ≤

∂ ∂
 

 
        , (0, ) (1, ) 0    for  0u t u t t= = >
 
        . ( ,00 sin( )     for 0 1u x x xπ= ≤ ≤
 



247 

 
References 

 
 
1 Aikinson, L.V., Hartley, P.J. and Hudson, J. D. (1989). Numerical Methods with Fortran 77 – A 

Practical Introduction, Addison-Wesley. 
 

2 AMES, W. F. (1977). Numerical Methods for Partial Differential Equations. 2nd ed. New 
York:Academic Press. 

 

3 Bartle, Robert G. (1974). The Element of Real Analysis, N.Y.: Wiley. 
 

4 Borse, G.J. (1997). Numerical methods with MATLAB. Boston:PWS. 
 

5 Burden, R.L. and Faires, J.D. (1989). Numerical Analysis. 4th ed. Boston: PWS-KENT Publishing 
Company. 

 

6 Butcher, J. (1987). The Numerical Analysis of Ordinary Differential Equations. New York: Wiley. 
 

7 Chapra, S.C. and Canale, R.P. (1988). Numerical Methods for Engineers. 2nd ed. New York: 
McGraw-Hill. 

 

8 Davis, P. J.  and Rabinowitz, P. (1975). Methods of Numerical Integration. New York:Academic 
Press. 

 
9 Dennis, J.E. Jr. and More, Jorge J. (1977). Quasi-Newton Methods, Motivation and Theory, SIAM 

review, Vol. 19, No. 1, pp46 – 89. 
 
 

10 Ellis, T.M.R., Phillips, I.R. and Lahey, T.M. (1994). Fortran 90 Programming. Addison-Wesley. 
 

11 Etter, D.M. (1992). Fortran 77 with Numerical Methods for Engineers and Scientists.  The 
Benjamin/Cummings Publishing Company, Inc. 

 

12 Garvan F. (2002). The Maple Book. Chapman & Hall/CRC. 
 

13 Gerald, C.F. and Wheatley, P. O. (1994). Applied Numerical Analysis. Addison-Wesley. 
 

14 Griffiths, D.V. and Smith, I.M. (1991). Numerical Methods for Engineers. Boca Raton, FL:CRC 
Press. 

 

15 Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, Washington, D.C.: U.S. Dept. of Commerce:U.S. G.P.O. 

 

16 Hamming, R.W. (1973). Numerical Methods for Scientist and Engineers. 2nd ed. New York: 
McGraw-Hill. 

 

17 Hildebrand, F.B. (1974). Introduction to numerical analysis. 2nd ed. New York:McGraw-Hill. 
 

18 HouseHolder, A. S. (1970). The numerical treatment of a single nonlinear equation. New 
York:McGraw-Hill. 

 

19 Kahaner, D.,  Moler, C., Nash S. (1989). Numerical methods and Software.  Englewood Cliffs, N.J.: 
Prince-Hall. 



248 

 

20 Lapidus, L. and Schiesser, W. E. (1976). Numerical Methods for Differential Equations. New 
York:John Wiley & Sons. 

 

21 Lawson, C. L. and Hanson, R. J. (1974). Solving Least Squares Problems. Englewood Cliffs, N.J.: 
Prince-Hall. 

22 Nakamura, S. (1993). Applied Numerical Methods in C. Englewood Cliffs, NJ:Prentice Hall. 
 

23 Ortega, J. M. (1972). Numerical Analysis-A second course. New York: Academic Press. 
 

24 Ortega, J. M. and W. G. Poole, Jr. (1981). An Introduction to Numerical Methods for Differential 
Equations. Mass.: Pitman Press, Marshfield. 

 

25 Rice, John R. (1983). Numerical Methods, Software, and Analysis. New York:McGraw-Hill. 
 

26 Rivlin, Theodore J. (1974). The Chebyshev Polynomials, New York: Wiley.  
 

27 Ralston, A., and Rabinowitx, P. (1978). A First Course in Numerical Analysis. 2nd ed. New 
York:McGraw-Hill. 

 

28 Schilling, R. J. and Harris S. L. (1999). Applied Numerical Methods for Engineers Using MATLAB 
and C. Brooks/Cole Publishing Company. 

 

29 Stoer, J. and Bulirsch R. (1980). Introduction to Numerical Analysis. New York:Springer-Verlag. 
 

30 Stroud, A. H. and Secrest, D. (1966). Gaussian Quadrature Formulas.  Englewood Cliffs, N.J.: 
Prince-Hall. 

 

31 Wiwatanapataphee B, Wu, Y.H. (2006). Program Design Using C++/F95/MATLAB.  Bangkok: 
Misterkopy Publishing Company. 

 

32 Young, D. M. (1971). Iterative Solution of Large Linear Systems. New York: Academic Press. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



249 

Appendix:  Introduction to Maple  
 

Maple is an interactive symbolic calculator and a programming language. One could use Maple 
solely interactively as a graphic calculator, or use it as a programming language, or use both 
features simultaneously. The aim of this Appendix is to provide a quick reference for using Maple 
(Version 11) on Standard Worksheet interface.
 

A1  Getting Start 
 
To work with Maple, double-click the Maple icon and then open a new worksheet in worksheet 
mode from the File menu via  File>New>Worksheet Mode.  In worksheet, you can enter Maple 
commands, and then press Enter to execute the commands. 
 

Maple commands are entered at the Maple prompt >, followed by either a semicolon (;) or a colon 
(:). If a commend ends with a semicolon, the executed result is displayed; while the result is 
computed but is not displayed if the commend ends with a colon.  For example 
 

  > factor(x^2 + 2*x + 1); 
 

 yields    
Notes: 
 

•   You can open, edit and save a worksheet in the same way as for a word document; 
 

•   You can execute a particular statement by moving the cursor to the end of the statement and 
pressing Enter; you could also compute or recompute the entire worksheet via 
Edit>Execute>Worksheet.   

 

•   You can enter commands using 1-D (like x^2) or 2-D Math by using palettes, such as the 
Matrix palette for inserting matrices and the Expression palette for entering expressions like 

 etc.  However you must use 1-D Math input when programming in Maple. 
1

0

xe xdx∫ To 

convert 2-D Math input to 1-D Math input, simply use Format > Convert To > 1-D Math 
Input. You can press F5 to change between 1D and 2D modes. 

 
A2  Arithmetic and Assignment Operations 

 
The basic arithmetic calculations can be performed by using arithmetic operators: +, -, *, 
/(division) and ^ exponentiation.  For example 

 

  >2+3*2+5/2; 
 

                                      yields        10.5 
 

If the evaluated value of the expression is to be used later, we can assign (store) it into a variable 
by using the assignment operator  :=  . For example      

> x:= 2^3: 
> y:=x+5; 
 

yields   y:=13
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Notes:   The assignment operator can also be used to store an expression in a variable. For 
example 

> eq1: = x^2-1=0: 
> xsol:=solve(eq1,x); 

  

stores the equation   in the variable eq1 and then solve the equation to yield 
the roots           xsol:=1, -1. 

2 1 0x − =

 
 

A3  Basic Maple Commands and Built-in Functions 
 
There are many commands and built-in functions available in Maple (or its associated packages) 
for performing certain tasks or solving certain mathematical problems either symbolically or 
numerically.   
 
Maple built-in functions for solving most of the mathematical problems covered in this book are 
given in each chapter with some illustrative examples. However, for quick referencing, we list 
below some common commands and built-in functions often used in mathematical calculation 
 

Command/ 
Built-in function 

Syntax Operation Example 

 

evalf 
 

evalf(expr) 
 

Evaluate the value of 
the expression  

 
evalf(cos(Pi/6))

 

diff 
 

diff(f(x,y),x,y) 
 

Differentiate f(x,y)with 
respect to x and y 

 
diff (x^3*y, x, y) 

 

lhs 
rhs 

 

lhs(expr) 
rhs(expr) 

 

Return the left (right) 
hand side of the expr 

 

e:=y=a*x^2+b 
lhs(e);  (returns y) 
rhs(e);  (returns a*x^2+b) 

? ? bring up the help menu  
    

 
A4  Data Types and Structures 

 
Maple can handle various data structures including: Expression sequences, Sets, Lists, Tables, 
Arrays, Matrices and Vectors, Functional Operators and Strings. 
 

Expression Sequence  
 
Expression sequence is a group of expressions separated by commas such as 

 

  > S:= 1, x, cos(x), exp(x) 
 

To access one of the expressions, enter the sequence name followed by the position of the 
expression enclosed in brackets (). For example 

 

  > S(3); 
 

   yields          cos(x) 
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Maple Set 
 

A set is an expression sequence enclosed in curly braces { } such as 
 

  > L:={1,6, x, y, 2*a} 
 

A Maple set has the basic properties of a mathematical set, for example 
 

  > {1,3,5} {2,4,6}   ∪
 

                             yields    {1,2,3,4,5,6} 
 

Note: The union operator is available in 1-D Math input  as union. 
 
 

Maple List 
 

A list is an expression sequence enclosed in brackets [ ] such as 
 

  > L:= [2,6, 5, 8, 0];    
 

To refer to an element in a list, Use square brackets.  For example: 
 

  > L [2..4]; 
 

         yields     [6,5,8]  
 

Some commands accept a list (or set) of expressions. For example, you can solve a list (or set) of 
equations using the command 
 

  > solve ([x-y^2+2=0,x+y=0]);  
 

                  to  yield    
 

Matrices and Vectors 
 

Matrices and Vectors are data structures used in linear algebra and vector calculus computations 
such as 

1 0
: : : 1,

2 3
;

M v

M v

⎡ ⎤
> = =< >⎢ ⎥

⎣ ⎦
> ⋅

2 ;
   

    yields        
1
5
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Functional Operator 
 

A functional operator is a mapping . The value of  is the result of evaluating . 
 

Using functional operators, you can define mathematical functions. For example, define a function 
that adds 1 to its input. 
 

  add1:= x ->x+1 
 

You can evaluate the function add1 with symbolic or numeric arguments. For example 
 

  > add1 (12); add1 (x+y);  
 

yields:     13     x+y+1 
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A5   Maple Selection Control 

 

You can specify that Maple perform an action only if a condition holds. You can also specify 
Maple to choose between alternative courses of action, depending upon conditions that are not 
known until the program is executed.  The selection control can be implemented by the following 
if structure 
 

if  (condition 1)  then 
      statement sequence 1  
elif(condition 2) then  
      statement sequence 2 
… 
else 
      statement sequence N 
end if 

 

Notes:  (i)  The elif (elseif) clauses are optional. You can specify any number of elif clauses; the 
else clause is also optional. 

 
 (ii)  Once the if structure is executed, Maple will first test condition 1. If condition 1 holds, 

Maple executes statement sequence 1 and then exits the if structure; otherwise Maple 
tests condition 2 and so on. If all conditions are not true, statement sequence N will be 
executed. 

 

Example.   
 

>  x := 18:
>  if (x<=10) then 
     y:=1+x 
    elif (x<=20) then 
     y:=2+x 
   else  
     y:=3+x 
   end if: 
>  y; 

 

           yields       20 
 

                Note: To enter Maple statements without execution, press Shift+Enter 
 
A6  Maple Repetition Control 
 

Maple provides two repetition controls, by a counter or by a condition.  If the number of iterations 
(repetitions) is known or can be predetermined, we use  
 

for counter from n0 by increment to n  do 
       statements to be done 
end do 

 
                                 Notes:  If  the  increment  is 1, then ‘by increment’ can be omitted. 
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Example 1:  Given (1, 2,3, 4,5,6)x = , calculate the sum of all entries of x . 
 

> x:=[1,2,3,4,5,6]: 
> SumAll:=0 
> for i from 1 to 6 do 
     SumAll:=SumAll+x[i] 
  end do: 
> SumAll:=SumAll; 

                    

                                                 yields            SumAll:=21 
                         

Example 2:  Given (1, 2,3, 4,5,6)x = , calculate the sum of all odd entries of x, starting from 5. 
 

> x:=[1,2,3,4,5,6]: 
> SumOdd:=0 
> for i from 5 by -2 to 1 do 
     SumOdd:=SumOdd+x[i] 
  end do: 
> SumOdd:=SumOdd; 

                    

                                                yields            SumOdd:=9 
 

 
If we do not know when to terminate the loop, but want to stop it when a condition becomes true, 
then we can choose a large enough integer number n and use the construction 
 

for i from 1 to n   while condition do 
        statement(s) 
end do 

 
 

Example 3: Given (1, 2,3, 4,5,6)x = , add the entries, starting from the first entry, while the 
sum is still less than 12. 

 

SumCond:=0: 
for i from 1 to 100  while SumCond<12 do: 
    SumCond:=SumCond+x[i]: 
end do: 
SumCond:=SumCond; 

       

 yields      SumCond:=15         
A7  Maple Procedures 
 

A Maple procedure is a program consisting of Maple statements. Using procedures, you can 
quickly execute the contained sequence of statements.   
 

A Maple procedure starts with a procedure header and ends with end proc as shown below: 
 
 

>  procedure_name:= proc(var1,var2,…,varn) 
   Maple statements   
   end proc

 

To run a procedure, enter its name followed by argument values within braces: 
 

> procedure_name(var1_value,var2_value,…)                     
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Example. Write a procedure to calculate    if 1 1( )
1     otherwise
x xf x

⎧⎪ − < <⎪=⎨⎪⎪⎩
 

 

>  f:=proc(x) 
     If(-1<x and x<1) then 
       fV:=abs(x) 
     else 
         fV:=1 
     end if 
   end proc: 
>  f:=f(-0.8); 
 

                                                     yields       f:=0.8  
 

Note:  When a procedure is called, Maple returns only the last computation encountered in 
the procedure. It is irrelevant whether you use semicolons or colons as statement 
separators. One could use the return statement to invoke an explicit return 

 
 

A8 Maple Graphics 
 
 

Two-dimensional plotting 
 

The syntax to plot the function f(x) for x from a to b is       plot(f(x),x=a..b) 
 

For example,      > plot (cos(x),x=0..2*Pi); 
 
To do multiple plotting, we can use the display function in the plot package and use option 
“legend=s” and “linestyle=n”  to distinguish one from the other: 
 

> with(plots): 
> p1:=plot(x^2+2x-1,x=0..2,linestyle=DOT,legend= “f(x)=x^2+2x-1”): 
> p2:=plot(exp(-2x)+1,x=0..2,linestyle=DASH,legend=“g(x)=exp(-2x)+1”): 
> display(p1,p2);  

    

    yields 
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To save a figure, click on the plot in worksheet that you want to save, and then right-mouse click 
to popup a menu and choose “export”  and then choose the format that you want the figure to be 
saved. 
 

To plot data points { } 1( ) n
i i ix y = , we can use command 

 

> L:[[x1,y1],[x2,y2],…,[xn,yn]]: 
> plot(L); 
 

Notes: To plot the points with no connected line, we can use the command 
 

> plot(L, style=point, symbol=circle); 
 

 Three-dimensional plot 
 

The syntax for plotting f(x,y) for x from a to b and y from c to d is 
 

plot3d(f(x,y),x=a..b,y=c..d)  
 

To do multiple plotting, we can use the display function in the plot package and use option 
“legend=s” and “linestyle=n”  to distinguish one from the other: 
 

> with(plots): 
> p1:=plot(x^2+y^2, x=-1..1,y=-1..1): 
> p2:=plot(sqrt(1-x^2-y^2),x=-1..1,y=-1..1): 
> display(p1,p2);  

 

    yields 
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                                         INDEX 
 

Aitken's Δ2 process, 23 

Augmented matrix, 29, 30 
 

Boundary conditions, 232 

 Dirichlet type, 232 

 Neumann type, 232 

 Robin type, 232 

Boundary value problem, 231 

Broyden’s method, 97 
 

Characteristic polynomial, 60, 61                

Cholesky factorization, 43 

Collocation method, 172 

Condition number , 70-72, 76  

Convergence, 16 

Crout's Method, 35, 36 

Cubic splines, 113 
 

Decomposition technique, 4 

Difference Operators, 108 
 

Eigenvalue, 60-64, 203, 204 

Eigenvector, 60-64, 203, 204 

Elementary row operations, 30 

Eliminating process, 30, 31, 33, 34, 38, 39 

Error Test, 9 

 Absolute Error, 9 

 Relative Error, 10 

Euler - Maclaurin Theorem, 126  

Euler’s method, 141, 144, 145 

Existence, 16 

Factorization Theorem, 34 

Finite difference, 107, 109, 111 

 Backward difference, 108 

 Central difference, 107, 109, 111 

 Forward  difference, 108 

Finite difference method, 169 

Fixed Point Iterative Methods, 92 
 

Gaussian elimination method, 29-31, 33-34 

Gauss-Jordan procedure, 47 

Gaussian Quadrature, 129 
 Gauss-Chebyshev, 131 

 Gauss-Hermite, 131 

 Gauss-Laguerre, 131 

 Gauss-Legendre, 130, 131 

Gauss-Seidel method, 77, 79, 83, 88, 89, 90 

Gerschgorin's Discs Theorem, 204   

Given’s method, 222 
 

Initial value problem, 156 

Iterative Methods, 18, 29 

 Bisection method, 13 

 Fixed point iteration, 15 

 Newton-Raphson  method, 20 

 Secant method, 23 
 

Jacobi method , 77, 79, 83, 90 
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Jacobian matrix, 94, 96, 97 
 

Lagrange interpolation, 106 

Least Squares Approximation, 182 

 Chebyshev polynomials, 195 

 Legendre Polynomials, 193 

 Orthogonal Polynomials, 187, 190 

Lebesque norms, 54 

 The Chebyshev   norm, 54     ( )∞l

 The Euclidean  norm, 54 2( )l

 The sum  norm, 54    1( )l

LU factorization method, 29, 34-37, 40-41 
 

Minimax Approximation, 182 

Modified Newton Method, 97 

Multiple integrals, 132 

Multistep Methods, 147 

 Adams-Bashforth Formulae, 148 

 Midpoint formulae, 149   

 Milne’s formulae, 149 
 

Neumann lemma, 69, 70     

Newton-Cotes formulas, 121 

Newton interpolation, 111 

Nonlinear equations, 12 

Norm, 53 

 Matrix norms, 57, 66, 74 

 Vector norms, 53, 54, 56, 57, 65 

Numerical differentiation, 134 

 3-point central difference formulae, 135 

 5-point central difference formulae, 135 

 3-point forward difference formulae, 135 

Numerical integration, 124 

 Composite Trapezoidal rule, 124 

 Composite Simpson' 1/3 rule, 125 

 Romberg Integration, 126 
 

Order of convergence, 15 

 Linear convergence, 15, 19  

 Quadratic convergence, 19 

Orthonormal set, 62, 63 
 

Partial differential equations, 231 

 Diffusion equation, 232 

 Poisson equation, 232 

 Wave equation, 232 

Permutation matrix, 41 

Piecewise interpolation, 113, 114 

Pivoting technique, 29, 39 

Polynomial interpolation, 105, 107 

Positive definite systems, 29  

Posteriori Error, 72 

Power Methods, 205 

Predictor-Corrector Method, 149 

 Adams-Moulton Multistep Predictor- 

 Corrector Method, 150 
 

Quadrature formulas, 123, 124 

 Simpson’s 1/3 rule, 123 

 Simpson’s 3/8 rule, 124 

Quasi Newton Methods, 97 
 

Rayleigh Quotient, 212 

Recurrence formulae, 31, 32, 36, 43, 46 

Relaxation methods, 77, 87, 88, 89 

 Over relaxation methods, 77 

 Under relaxation methods, 77 
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Residual errors, 53, 71-73 

Richardson's Extrapolation, 171 

Root, 12 

 Complex roots, 12 

 Multiple root,  22 

 Real single root, 12 

 Repeated real roots, 12 

 Simple root, 22 

Runge-Kutta method, 143, 145, 146 
 

Shift operator, 107 

Shooting Method, 165 

Similarity Transformation, 215 

Spectral radius, 60, 61, 63-65, 75   

Steffensen’s method, 24 

Stepwise refinement technique, 4 

Substitution process, 30, 32, 33 

 Backward substitution process, 30, 32 

 Forward substitution process, 33 
 

Taylor series methods, 141, 142 

Taylor Theorem, 2 

The Cauchy-Buniakowsky-Schwarz inequality, 54 

The Extreme Value Theorem, 2 

The Mean Value Theorem, 1 

The Steepest Descent method, 99 

Tridiagonal Matrix, 46 

Tridiagonal system, 29, 46, 52 

Two point boundary value problem, 165 
 

Uniqueness, 16 
 

Weierstrass Approximation Theorem, 105 

Weighted least square polynomial fit, 185 
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